
Chapter 1

Quantum formalism

1.1 Summary of quantum states and observables

In this section we make a summary of fundamental assumptions and postulates of
the quantum theory. We stress the correspondance with classical theory, but at the
same time focus on the radically different way the quantum theory is interpreted.
We summerize how an isolated quantum system is described in terms of abstract
vectors and operators in a Hilbert space.

1.1.1 Classical and quantum states

The classical description of a system that is most closely related the standard
quantum description is the phase space description of the system. The variables
are the generalized coordinates q = {qi ; i = 1, 2, ..., N} and the canonical mo-
menta p = {pi ; i = 1, 2, ..., N}. (Note, when no ambiguity can arise we denote
the whole sets of coordinates simply by q and p.) Each degree of freedom is rep-
resented by one coordinate qi with the corresponding momentum pi. A complete
specification of the state of the system is given by the full set of coordinates and
momenta (q, p), which identifies a point in phase space.

There is a unique time evolution of the phase space coordinates (q(t), p(t)),
with a given initial condition (q0, p0) = (q(t0), p(t0)) at time t0. This is so, since
the equation of motion, expressed in terms of the phase space coordinates is linear
in time derivatives. For a Hamiltonian system the dynamics can be expressed in
terms of the classical Hamiltonian, which is a function of the phase space variables
H(q, p) and normally is identical to the energy function. The time evolution is

7
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expressed by Hamilton’s equations as

q̇i =
∂H

∂pi

, ṗi = −∂H

∂qi

(1.1)

By solving for the canonical momenta the dynamical equations can be ex-
pressed in terms of the coordinates {qi} alone. These define the configuration
space of the system. The Lagrangian of the system, which is related to the Hamil-
tonian by

L(q, q̇) =
∑

i

q̇ipi − H(q, p) , q̇i =
∂H

∂pi

(1.2)

determines the dynamics in configuration space through the Euler-Lagrange equa-
tions,

∂L

∂qi

− d

dt
(
∂L

∂q̇i

) = 0 , i = 1, 2, ..., N (1.3)

This is second order in time derivatives and corresponds to Newton’second law
expressed in general coordinates.

If a complete specification of the system cannot be given, a statistical descrip-
tion is often used. The state of the system is then described in terms of a probabil-
ity function ρ(q, p) defined on the phase space, and this is the basis of a statistical
mechanics description of the system. The time evolution is described through the
time derivative of ρ,

d

dt
ρ =

∑

i

(
∂ρ

∂qi

q̇i +
∂ρ

∂pi

ṗi) +
∂

∂t
ρ

= {ρ, H}PB +
∂

∂t
ρ (1.4)

where the Poisson bracket, defined by

{A, B}PB =
∑

i

(
∂A

∂qi

∂B

∂pi

− ∂B

∂qi

∂A

∂pi

)

(1.5)

has been introduced. One should note that in Eq.(1.4) ∂
∂t

is the time derivative with
fixed phase space coordinates, whereas d

dt
includes the time variation due to the

motion in phase space. The time evolution of ρ (and any other phase space vari-
able), when written in this way, shows a remarkable similarity with the Heisenberg
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equation of motion of the quantum system. The commutator between the variables
then takes the place of the Poisson bracket.

The quantum description of the system discussed above also involves the
(phase space) variables (q, p). But these dynamical variables are now re-interpreted
as operators that act on complex-valued functions, the wave-functions ψ(q), which
usually are defined as a functions over the configuration space. To specify the vari-
ables as operators they are often written q̂i and p̂i. In the standard way we refer to
these as observables, and the fundamental relation between these observables is
the (Heisenberg) commutation relation

[q̂i, p̂j] = ih̄δij (1.6)

with h̄ as Planck’s constant. A more general observable Â may be viewed as a
function of qi and pi, and in general two observables Â and B̂ will in general
not commute. We usually restrict observables to be Hermitean operators, which
corresponds to real-valued variables in the classical description.

There is a close relation between the classical description of a mechanical sys-
tem and the corresponding quantum decription, and this relation is most explicit
when the dynamics is expressed in terms of phase space variables. The transition
from the classical to the quantum description is referred to as canonical quantiza-
tion and is in its simplest form described as a transition between classical variables
and quantum observables

qi → q̂i, pi → p̂i (1.7)

where the quantum variables satisfy the fundamental commutation relation (1.6).
This transition between the classical and quantum description is often expressed
in terms of a substitution between Poisson brackets (for the classical variables)
and commutators (for the quantum variables)

{A, B}PB → 1

ih̄

[
Â, B̂

]
(1.8)

Clearly this simple substitution rule gives the right commutator between q̂i and p̂j

when used on the Posson brackets between qi and pj . 1

1In general there will, however be an ambiguity in this substitution in the form of the so called
operator ordering problem. Since classical observables commute, a composite variable C =
AB = BA can be written in several ways. The corresponding quantum observables may be
different due to non-commutativity, Ĉ = ÂB̂ �= B̂Â = Ĉ ′. The Weyl ordering is a way to solve
the ambiguity by replacing a product by its symmetrized version, Ĉ = 1

2 (ÂB̂ + B̂Â).
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Viewed the other way, the classical description can be seen as a special “clas-
sical limit” of the quantum description, where Planck’s constant disappears from
the equations. This transition to the classical description, as a limit of the quantum
theory, is referred to as the correspondance principle, and was by Bohr (and oth-
ers) used as a guiding principle in the development of the early form of quantum
mechanics. For radiative transitions between atomic levels the correspondance
principle implies that the radiation formula of the quantum theory reproduces the
classical one for highly excited atoms, in the limit where the excitation energy
approaches the ionization value.

The close relation between the classical and quantum dynamics is clearly seen
in the similarity between the classical equations of motion and the Heisenberg
equation of motion for the quantum system. The latter is usually obtained from
the former simply by the substitution (1.7). This correspondance relates directly to
Ehrenfest’s theorem, which states that the classical dynamical equations keep their
validity also in the quantum theory, if the classical variables are replaced by their
corresponding quantum expectation values. Thus, the quantum expectation value
〈q〉 in many respects behaves like a classical variable q, and the time evolution of
the expectation value follows a classical equation of motion. As long as the wave
function is well localized (in the q-variable), the system is “almost classical”.
However if the wave functions more spread or divides into separated parts, then
highly “non-classical effects” may arise.

The close correspondance between the classical and quantum theory is in
many respects rather surprising, since the physical interpretation of the two theo-
ries are radically different. The difference is linked to the statistical interpretation
of the quantum theory, which is the subject of one of the later sections. Both
classical and quantum descriptions of a system will often be of statistical nature,
since the full information (especially for systems with a large number of degree
of freedom) may not be achievable. Often interactions with other systems (the
surroundings) disturb the system in such a way that only a statistical description
is meaningful. If such disturbances are negligible the system is referred to as an
isolated or closed system and for a classical system all the dynamical variables
can in principle be ascribed sharp values.

For a quantum system this is not the case. The quantum state of an isolated
system is described by the wave function ψ(q) defined over the (classical) con-
figuration space and this is interpreted as an probability amplitude. This means
that the absolute value |ψ(q)|2 defines a probability distribution in configuration
space. For a general observableâ this leads to a statistical variation or uncertainty
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in the measured value, expressed in terms of the variable

∆A2 =
〈
(Â − 〈â〉)2

〉
(1.9)

Even if this probability distribution in principle can be sharp in the set of variables
q, it cannot at the same time be sharp in the conjugate variables p due to the funda-
mental commutation relation (1.6). This is quantified in Heisenberg’s uncertainty
relation

∆qi∆pi ≥
h̄

2
(1.10)

The inherent probabilistic interpretation of the quantum theory in many re-
spects is more closely related to a statistical description of the classical system
than to detailed non-statistical description. However, the standard description in
terms of a wave function ψ(q) defined on the configuration space seems rather dif-
ferent from a classical statistical description in tems of a phase space probability
distribution ρ(q, p). Quantum descriptions in terms of functions similar to ρ(q, p)
are possible (the so-called Wigner function is of this type) and in some cases they
are useful description. But one important property of the wave functions is hidden
in such a reformulation. The superposition principle is a fundamental principle
of quantum mechanics which makes the dynamical equations expressed in terms
of the wave functions linear equations. The (quasi-) probability distributions de-
rived from the standard quantum description are quadratic in ψ(q), and therefore
the linearity is lost. In the classical statistical theory there is no counterpart to the
superposition principle.

The description of the quantum system in terms of wave functions defined as
functions over the classical configuration space is only of many equivalent “rep-
resentations” of the quantum theory. A more abstract formulation exists, based on
superposition principle, where the states are (abstract) vectors in a complex vector
space. Different representations of the theory correspond to different choices of
basis in this vector space. In the following a summary of this abstract (and formal)
description is given, in terms of what may be called the fundamental postulates of
quantum theory.

1.1.2 The fundamental postulates

1. A quantum state of an isolated physical system is described by a vector with
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unit norm in a complex vector space (a Hilbert space)2 equipped with a
scalar product.

In the Dirac notation a vector is represented by “ket” |ψ〉, which can be
expanded in any complete set of basis vectors |ai〉,

|ψ〉 =
∑

i

ci|ai〉 (1.11)

where the coefficients ci are complex numbers. For an infinite dimensional
Hilbert space the basis may be a discrete or continuous set of vectors. We
refer to the vectors (kets) as state vectors and the vector space as the state
space.

A “bra” 〈ψ| is regarded as vector in the “dual vector space”, and is related
to |ψ〉 by an “anti-linear” mapping (linear mapping + complex conjugation)

|ψ〉 → 〈ψ| =
∑

i

c∗i 〈ai| (1.12)

The scalar product is a complex-valued composition of a bra and a ket,
〈φ|ψ〉 which is a linear function of |ψ〉 and an antilinear function of 〈φ|.

2. The time evolution of the state vector, |ψ〉 = |ψ(t)〉, is (in the Schrödinger
picture) defined by the Schrödinger equation, of the form

ih̄
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 (1.13)

The equation is linear in the time derivative, which means that the time
evolution |ψ〉 = |ψ(t)〉 is uniquely determined by the initial condition
|ψ〉0 = |ψ(t0)〉. Ĥ is the Hamiltonian of the system which is a linear,
hermitean operator. It gives rise to a time evolution which is a unitary, time
dependent, mapping of the quantum states.

3. Each physical observable of a system is associated with a hermitian opera-
tor acting on the Hilbert space. The eigenstates of each such operator form
a complete orthonormal set.

2A Hilbert space is an (infinitedimensional) vector space with a scalar product (an inner product
space) which is complete in the norm. This means that any (Cauchy) sequence of vectors |n〉, n =
1, 2, ..., where the norm of the relative vectors |n, m〉 = |n〉− |m〉 goes to zero as n, m → ∞ will
have a limit (vector) belonging to the space.
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With Â as an observable, hermiticity means

〈φ|Âψ〉 = 〈Âφ|ψ〉 ≡ 〈φ|Â|ψ〉 (1.14)

If the observable has a discrete spectrum, the eigenstates are orthogonal and
may be normalized as

〈ai|aj〉 = δij (1.15)

Completeness means
∑

i

|ai〉〈ai| = 1̂ (1.16)

where 1̂ is the unit operator. In general a hermitean operator will have partly
a discrete and partly a continuous spectrum. For the continuous vectors
orthogonality is expressed in terms of Dirac’s delta function.3

4. If the system is in state |ψ >, then the result of a measurement of a physical
observable Â is one of the eigenvalues an of the associated hermitian oper-
ator. The probability for measuring a specific eigenvalue an is given by the
square modulus of the scalar product of the state |ψ〉 with the (normalized)
eigen vector |an〉,

pn = |〈an|ψ〉|2 (1.17)

If the observable has a degeneracy, so that several (orthogonal) eigenvec-
tors have the same eigenvalue, the probability is given as a sum over all
eigenvectors with the same eigenvalue an. The expectation value of an ob-
servable A obtained by a measurement on the system is

〈A〉 =< ψ|Â|ψ > . (1.18)

and is equal to the mean value obtained by an (infinite) sequence of identical
measurements performed on the system, which before each measurement is
prepared in the same state |ψ〉.

3For an observable with a discrete spectrum the eigenstates are normalizable and belong to the
Hilbert space. For a continuous spectrum the eigenstates are non-normalizable and fall outside
the Hilbert space. They can be included in an extension of the Hilbert space. Completeness
holds within this extended space, but orthonormality of the vectors has to be expressed in terms of
Dirac’s delta function rather than the Kronecker delta.
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5. An ideal measurement of observable A resulting in a value an projects the
state vector from initial value |ψ > to final state

|ψ >→ |ψ′ >= Pn|ψ > . (1.19)

where Pn is the projection on the eigenstate |an〉, or more generally on the
subspace spanned by the vectors with eigenvalue an.4

Note that since the projected state in general will not be normalized to unity,
the state should also be multiplied by a normalization factor in order to
satisfy the standard normalization condition for physical states.

The projection to the eigenstate which corresponds to the measured eigen-
value in a sense is a minimal disturbance of the system caused by the mea-
surement. It is often referred to as the “collapse of the wave function”, and
corresponds to the “collapse” of a probability function of a classical sys-
tem when additional information is introduced in the description. But one
should be aware of the farreaching difference of this “collapse by adding
new information” in the classical and quantum description.

1.1.3 Coordinate representation and wave functions

A coordinate basis is a continuous set of eigenvectors of the coordinate observ-
ables q̂i

q̂i |q〉 = qi |q〉 (1.20)

where q denotes the set of coordinates {qi}. For a Cartesian set of coordinates the
standard normalization is

〈q′|q〉 = δ(q′ − q) (1.21)

where δ(q′ − q) is the N-dimensional Dirac delta-function, with N as the dimen-
sion of the configuration space. The wave functions defined over the configuration
space of the system are the components of the abstract state vector |ψ〉 on this ba-
sis,

ψ(q) = 〈q|ψ〉 (1.22)

4Such idealized measurements are often referred to as projective measurements.
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A general observable is in the coordinate representation specified by its matrix
elements

A(q′, q) ≡ 〈q′|Â|q〉 (1.23)

It acts on the wave function as an integral operator

〈q|Â|ψ〉 =
∫

dNq′ A(q, q′)ψ(q′) (1.24)

A potential function is an example of a local observable,

V (q′, q) = V (q) δ(q′ − q) (1.25)

The momentum operator is quasi-local in the sense that it can be expressed as a
derivative rather than an integral

〈q|p̂i|ψ〉 = −ih̄
∂

∂qi

〈q|ψ〉 (1.26)

Formally we can write the matrix elements of the momentum operator as the
derivative of a delta function

〈q|p̂i|q′〉 = −ih̄
∂

∂qi

δ(q − q′) (1.27)

(Check this by use of the integration formula for observables in the coordinate
representation.)

From the abstract formulation it is clear that the coordinate representation is
only one of many equivalent representations of quantum states and observables.
The momentum representation is defined quite analogous to the coordinate repre-
sentation, but now with the momentum states |p〉 as basis vectors,

ψ(p) = 〈p|ψ〉 (1.28)

The transition matrix elements between the two representations is (for Cartesian
coordinates),

〈q|p〉 = (2πh̄)−N/2 exp(
i

h̄
q · p) (1.29)

with q · p =
∑

i qipi, which means that these two (conjugate) representations are
related by a Fourier transformation.
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Note that often a set of continuous (generalized) coordinates is not sufficient
to describe the wave function. For example, the spin variable of a particle with
spin has discrete eigenvalues and does not have a direct counterpart in terms of a
continuous classical coordinate. With discrete variables present the wave function
can be described as a multicomponent function

ψm(q) = 〈q, m|ψ〉 (1.30)

where m represents the discrete variable, e.g. the spin component in the z-direction.
The coordinate representation and the momentum representation are only two

specific examples of equivalent representations of the quantum system. In gen-
eral the transitian matrix element between two representations, defined by two
orthonormal sets of basis vectors, {|an〉} and {|bm〉} is,

Umn = 〈an|bm〉 (1.31)

and satisfies the condition
∑

m

UnmU∗
mn′ =

∑

m

〈an|bm〉〈bm|a′
n〉 = δnn′ (1.32)

This means that it is a unitary matrix, and the corresponding representations are
unitarily equivalent.

1.1.4 Spin-half system and the Stern Gerlach experiment

The postulates of quantum mechanics have far reaching implications. We have
earlier stressed the close correspondance between the classical (phase space) the-
ory and the quantum theory. Now we will study a special representation of the
simplest quantum system, the two-level system, where some of the basic differ-
ences between the classical and quantum theory are apparent.

The electron spin gives an example of a spin-half system, and when the (or-
bital) motion of the electron is not taken into account the Hilbert space is reduced
to a two-dimensional (complex) vector space. This two-dimensionality is directly
related to the discovery of Stern and Gerlach of the two spin states of silver atoms.
Their discovery is clearly incompatible with a classical model of electron spin as
due to the rotation of a small body.

We focus on the Stern-Gerlach experiment as shown schematically in Figure
1. A beam of Ag atoms is produced by an oven with a small hole. Atoms with ve-
locity sharply peaked around a given value are selected and sent through a strong
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S

N

Figure 1.1: The Stern-Gerlach experiment. Atoms with spin 1/2 are sendt in a
beam from an oven. When passing between two magnets, the atoms are deflected
vertically, with an angle depending on the vertical spin component. Classically a
smooth distribution is expected, since there is no preferred directions for the spin.
In reality only two directions are observed, consistent with the quantum prediction
of quantization of the spin.

magnetic field. Due to a weak gradient in the field the particles in the beam are
deflected, with a deflection angle depending on the component of the magnetic
moment in the direction of the gradient. The degree of deflection is measured by
registering the particles on a screen.

Let us first analyze the deflection from a classical point of view. We assume
the atoms to have a magnetic moment µ = −e/(mec)S, where S is the intrinsic
spin, e is the electron charge and me is the electron mass. (The main contribu-
tion to the magnetic moment comes from the outermost electron.) Between the
magnets there is an approximately constant magnetic field B = Be1, where e1

is a unit vector in the direction of the magnetic field. The spin will here rapidly
presess around the magnetic field and the average value will be in the direction
of the magnetic field, µ̄ = m1e1. There is a gradient in the magnetic field which
produces a force on the atom and changes its momentum

ṗ = ∇(µ · B) ≈ µ1∂1Be1 (1.33)

This shows that the deflection angle is proportional to the component of the mag-
netic moment along the magnetic field. Since we expect the spin direction of
the emmitted Ag atoms to be randomly distributed in space we expect from this
classical reasoning to se a continuous distribution of the atoms on the screen.

The surprising discovery of Stern and Gerlach was that there was no such
continuous distribution. Instead the position of the atoms were rather strongly re-
stricted to two spots, which according to the deflection formula would correspond
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to the two values

µ1 = ±µ . (1.34)

This result cannot be understood within classical theory.
To see this, let us consider two hypothetical situations, that instead of mea-

suring the component µ1 (by measuring the deflection angle in the e1 direction),
we had measured µ2 along the direction e2 rotated by an angle +1200 or µ3 along
the direction e3 rotated by an angle −1200 relative to e1. By elementary vector
addition it is clear that the sum of these (hypothetical) results would be

µ1 + µ2 + µ3 = µ · (e1 + e2 + e3) = 0 (1.35)

But this is incompatible with the result of the Stern-Gerlach experiment, since the
possible values ±m cannot be restricted to the component µ1, but must, due to
rotational symmetry, be the only values possible also for µ2 and µ3.

However, the result of the Stern-Gerlach experiment is consistent with the
postulates of quantum mechanics, if we assume that the spin component in a given
direction is an observable with only two eigenvalues

Ŝx |±〉x = ± h̄

2
|±〉x (1.36)

When the components satisfy the spin algebra

[
Ŝx, Ŝy

]
= ih̄ Ŝz (+ cycl. perm.) (1.37)

then the component of the spin vector in any direction will have the two eigenval-
ues ±h̄/2.

A typical feature of the spin operator is that its components in different direc-
tions do not commute, they are incompatible observables. This means that they in
general cannot be ascribed sharp values at the same time, since they do not have
common eigenvectors. This incompatibility is directly related to the paradox met
above when we ascribed a (hypothetical) sharp value to the magnetic moment in
all the three directions µ1, µ2 and µ3. The situation that we have met here, that the
components of a vector that can be continuously rotated has discrete eigenvalues,
cannot be explained within the framework of classical theory.
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1.2 Quantum Dynamics

In this section we formulate the dynamical equation of a quantum system and
compare the two unitarily equivalent descriptions, the Schrödinger and Heisen-
berg pictures. We also examine the rather different Feynman’s path integral for-
mulation of quantum dynamics. The two-level system and the one-dimensional
harmonic oscillator models are studied and we introduce coherent states descrip-
tion.

1.2.1 The Schrödinger and Heisenberg pictures

The Schrödinger picture.
The time evolution of an isolated quantum system is defined by the Schrödinger
equation. Originally this was formulated as a wave equation, but it can be re-
formulated as a differential equation in the (abstract) Hilbert space of ket-vectors
as

ih̄
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 (1.38)

With the state vector given for an initial time t0 it will determine the state vector
at later times t (and also for earlier times) as long as the system stays isolated.
The information about the dynamics is contained in the Hamiltonian Ĥ , which
usually can be identified with the energy observable of the system. The original
Schrödinger equation, described as a wave equation can be viewed as the coordi-
nate representation of Eq.(1.13).

For a system described by phase space variables (q, p), the classical motion in
phase space is described by the Hamiltonian function H((q, p)), which (normally)
is the classical energy written as a function of q and p. Canonical quantization im-
plies that the quantum Hamiltonian is defined by the same function of the (quan-
tum) phase space variables, Ĥ = H(q̂, p̂). However, one should note that in some
cases there is an “operator order” ambiguity. This means that two classical ex-
pressions for H that are equivalent due to the commutativity of the classical phase
space variables, may be mapped into to two non-equivalent quantum observables,
due to the non-commutativity of the quantum phase space variables. One way to
resolve this ambiguity is the Weyl ordering which symmetrizes products in q and
p.

The time evolution of the state vector can be expressed in terms of a time
evolution operator Û(t, t0), which is a unitary operator that relates the state vector
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of the system at time t with that of time t0,

Û(t, t0)|ψ(t0)〉 = |ψ(t)〉 (1.39)

The time evolution operator is determined by the Hamiltonian through the equa-
tion

ih̄
∂

∂t
Û(t, t0) = ĤÛ(t, t0) (1.40)

which follows from the Schrödinger equation(1.13).
When Ĥ is a time-independent operator, a closed form for the time evolution

can be given

Û(t − t0) = e−
i
h̄

Ĥ(t−t0) (1.41)

(Note that a function of an observable Ĥ , like exp(− i
h̄
Ĥ(t − t0)) can be defined

by its action on the eigenvectors |E〉 of Ĥ ,

e−
i
h̄

Ĥ(t−t0)|E〉 = e−
i
h̄

E(t−t0)|E〉 .) (1.42)

If however Ĥ is time dependent so that the operator at different times do not
commute, we may use a more general integral expression

Û(t − t0) =
∞∑

n=0

(−i

h̄

)n ∫ t

t0
dt1

∫ t1

t0
dt2 · · ·

∫ tn−1

t0
dtn Ĥ(t1)Ĥ(t2) · · · Ĥ(tn)

(1.43)

where the term corresponding to n = 0 is simply the unit operator 1̂. Note that
the product of the the time dependent operators Ĥ(tk) is a time-ordered product.

The Heisenberg picture.
The description of the quantum dynamics given above is usually referred to as
the Schrödinger picture. From the discussion of different representations of the
quantum system we know that unitary transformations of states and observables
leads to a different, but equivalent representation of the system. Thus, if we de-
note the states of a system by |ψ〉 and the observables by A and make a unitary
transformation Û on all states and all observables,

|ψ〉 → |ψ′〉 = Û |ψ〉 , Â → Â′ = ÛÂÛ † , Û Û † = 1̂ , (1.44)
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then all matrix elements are left unchanged,

〈φ′|Â′|ψ′〉 = 〈φ|Û †ÛÂÛ †Û |ψ〉 = 〈φ|Â|ψ〉 (1.45)

and since all measurable quantities can be expressed in terms of such matrix ele-
ments, the two descriptions related by a unitary transformation can be viewed as
equivalent. This is true also when Û = Û(t) is a time dependent transformation.

The transition to the Heisenberg picture is defined by a special unitary trans-
formation

Û(t) = Û †(t, t0) (1.46)

This is the inverse of the time-evolution operator, and when applied to the time-
dependent state vector of the Schrödinger picture it will simply cancel the time
dependence of the state vector

|ψ〉H = Û †(t, t0)|ψ(t)〉S = |ψ(t0)〉S (1.47)

Here we have introduced a subscript S for the vector in the Schrödinger picture
and H for the Heisenberg picture. (The initial time t0 is arbitrary and is often
chosen as t0 = 0.) The time evolution is now carried by the observables, rather
than the state vectors,

ÂH(t) = Û †(t, t0) ÂS Û(t, t0) (1.48)

and the Schrödinger equation is replaced by the Heisenberg equation of motion

d

dt
ÂH =

i

h̄
[Ĥ, ÂH ] +

∂

∂t
ÂH (1.49)

One should note the difference between the (dynamical) time dependence of the
observable ÂH(t) in the Heisenberg picture and the time dependence allowed for
in the expression (1.43) for the time evolution operator. The latter is due to a possi-
ble (explicit) time dependence of the Hamiltonian caused by time varying external
influence on the system. This gives rise to time variation of the observables in the
Schrödinger picture. In the Heisenberg equation of motion observables such a
variation will give a contribution through the partial derivative in (1.49). With-
out such an explicit time dependence, the time evolution is caused only by the
non-commutativity of the observable with the Hamiltonian.

The interaction picture
A third representation of the unitary time evolution of a quantum system is the
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interaction picture which is particularly useful in the context of time-dependent
perturbation theory. The Hamiltonian is of the form

Ĥ = Ĥ0 + Ĥ1 (1.50)

where Ĥ0 is the unperturbed Hamiltonian and Ĥ1 is the (possibly time dependent)
perturbation. The eigenvalue problem of Ĥ0 we assume can be solved and the
corresponding time evolution operator is

Û0(t − t0) = e−
i
h̄

Ĥ0(t−t0) (1.51)

The transition from the Schrödinger picture to the interaction picture is defined by
acting with the inverse of this on the state vectors

|ψ(t)〉I = Û †
0(t, t0) |ψ(t)〉S (1.52)

Note that the time variation of the state vector is only partly cancelled by this
transformation, since the effect of the perturbation Ĥ1 is not included. The time
evolution of the observables is given by

ÂI(t) = Û †
0(t, t0) ÂS Û0(t, t0) (1.53)

This means that they satisfy the same Heisenberg equation of motion as for a
system where the hamiltonian is simply Ĥ = Ĥ0. The remaining part of the
dynamics is described by the interaction Hamiltonian

ĤI(t) = Û †
0(t, t0) Ĥ1 Û0(t, t0) (1.54)

which acts on the state vectors through the (modified) Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉I = ĤI(t)|ψ(t)〉I (1.55)

The corresponding time evolution operator has the same form as (1.43),

ÛI(t − t0) =
∞∑

n=0

(−i

h̄

)n ∫ t

t0
dt1

∫ t1

t0
dt2 · · ·

∫ tn−1

t0
dtn ĤI(t1)ĤI(t2) · · · ĤI(tn)

(1.56)

and this form of the operator gives a convenient starting point for a perturbative
treatment of the effect of ĤI . We shall apply this method when studying the
interaction between photons and atoms in a later section.

We summarize the difference between the three pictures by the following table



1.2. QUANTUM DYNAMICS 23

States Operators
Schrödinger time dependent time independent
Heisenberg time independent time dependent
Interaction time dependent time dependent

1.2.2 Path integrals

Feynman’s path integral method to study the dynamics of quantum systems is
rather different from the methods outlined above. Instead of applying the stan-
dard description of states as vectors in a Hilbert space, it focusses directly on
transition matrix elements and describe these as integrals over classical trajecto-
ries of the system. The method is well suited to describe quantum systems which
can be expressed in terms of continuous variables, but for discrete variables like
the intrinsic spin of the electron, it is not so well suited. (However, path integral
methods which use “Grassman variables” can deal also with discrete variables.

The path integral method is used extensively in quantum field theory, and it
has become a standard method which is applied in many parts of physics. For this
reason it is natural to include it also here. Although the path integral method can
be viewed as a fundamental approach to quantum theory, i.e., a method that com-
pletely circumvent the standard description with state vectors and observables, it
is often instead derived from the Hamiltonian formulation, and that is the approach
we also will take.

Let us consider the time evolution of a quantum system as a wave ψ(q, t) in
configuration space, where q = {q1, q2, ..., qN} is a set of continuous (generalized)
coordinates. In the “bra-ket” notation we write it as

ψ(q, t) = 〈q|ψ(t)〉
= 〈q|Û(t, t0)|ψ(t0)〉
=

∫
dNq′〈q|Û(t, t0)|q′〉〈q′|ψ(t0)〉

≡
∫

dNq′〈q t|q′ t0〉 ψ(t0) (1.57)

The information about the dynamics of the system is encoded in the transition
matrix element

〈q t|q′ t0〉 = 〈q|Û(t, t0)|q′〉 (1.58)

which gives the probability amplitude for the system which starts in the configura-
tion q′ at time t0 to end up (in a position measurement) in the configuration q at a
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x

t

(x0,t0)

(x1,t1)

Figure 1.2: The path integral as a “sum over histories”. All possible paths between
the initial point (x0, t0) and the final point (x1, t1) contribute to the quantum tran-
sition amplitude between the points. The paths close to the classical path, here
shown in dark blue, tend to be most important since their contributions interfere
constructively.

later time t. This amplitude is often referred to as a propagator, G(q t, q′ t0) and is
usually defined as being a “causal” propagator, in the sense that it only propagates
forward in time.

G(q t, q′ t0) =
{ 〈qt | qt0〉 t > t0

0 t < t0
(1.59)

We will see how a path integral representation of this propagator can be found.
For simplicity we shall consider the case of a one-dimensional configuration spce.
We may visualize this as a particle moving on a line.

First we note that the propagation between t0 and t can be viewed as composed
of the propagation between a series of intrmediate times tk, k = 0, 1, ...n with
tn = t and where n may be arbitrary large

G(x t, x′ t0) =
∫

dxn−1...
∫

dx2

∫
dx1G(x t, xn−1 tn−1)...G(x2 t2, x1 t1)G(x1 t1, x

′ t0)

(1.60)

This follows from a repeated use of the composition rule satisfied by the time
evolution operator

Û(tf , ti) = Û(tf , tm) Û(tm, ti) (1.61)
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where ti, tm and tf are arbitrary chosen times. In the expression (1.60) for G(x t, x′ t0)
the intermediate times t1, t2... may also be arbitrarily distributed between t0 and
t, but for simplicity we think of them as having a fixed distance

tk+1 − tk = ∆t ≡ (t − t0)/n (1.62)

To proceed we assume a specific form for the Hamiltonian,

Ĥ =
1

2m
p̂2 + V (x̂) (1.63)

which is that of a particle of mass m moving in a one-dimensional potential V (x).
The propagator for a small time inteval ∆t is

G(x t + ∆t, x′ t) = 〈x|e− i
h̄

Ĥ∆t|x′〉
≈ 〈x|e− i

h̄
1

2m
p̂2∆te−

i
h̄

V (x̂)∆t|x′〉
= 〈x|e− i

h̄
1

2m
p̂2∆t|x′〉e− i

h̄
V (x′)∆t (1.64)

We have here made use of

ei(Â+B̂)∆t = eiÂ∆teiB̂∆t + O(∆t2) (1.65)

where Â and B̂ are two (non-commuting) operators and the O(∆t2) term comes
from the commutator between Â and B̂. In the present case Â = p̂2/(2mh̄),
B̂ = V̂ /h̄, and these clearly do not commute. However, we will take the limit
∆t → 0 (n → ∞) and this allows us to neglect the correction term coming from
the commutator. The x-space matrix element of the kinetic term can be evaluated

< x|e− i
h̄
∆t p̂2

2m |x′ > =
∫

dp < x|p > e−
i
h̄

p2

2m
∆t < p|x′ >

=
∫ dp

2πh̄
e

i
h̄

p(x−x′)e−
i
h̄

p2

2m
∆t

=
∫ dp

2πh̄
e−

i
h̄

∆t
2m

(p−m x−x′
∆t

)2e
i
h̄
∆t m

2

(
x−x′
∆t

)2

= N∆t ei
m(x−x′)2

2h̄∆t . (1.66)

where N∆t is an x-independent normalization constant,

N∆t =
∫ dp

2πh̄
e−i ∆t

2mh̄
(p−m x−x′

∆t
)2

=
∫ dp

2πh̄
e−i ∆t

2mh̄
p2

(1.67)
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This last expression may look somewhat mysterious, since the integral does not
seem to converge for large p. However, let us focus on a related integral, the
Gaussian integral with a real coefficient in the exponent. This is convergent,

+∞∫

−∞
dpe−λ p2

=

√
π

λ
(1.68)

Now we shall simply assume that the correct expression for N∆t is found by mak-
ing an analytic continuation of this result to imaginary λ. This gives

N∆t =

√
m

2πih̄∆t
(1.69)

For the matrix element of the time evolution operator we now get,

< x|e− i
h̄
∆tH |x′ >= N∆t ei

m(x−x′)2
2h̄∆t e−

i
h̄

V (x′)∆t (1.70)

and with x′ → xk and x → xk+1 this can be used for each term in the factorized
expression (1.60) for the propagator. The result is

G(x t, x′ t0) = (N∆t)
n

∫
dxn−1...

∫
dx2

∫
dx1 e

i
h̄
∆t

n∑
k=0

[m
2

(
xk+1−xk

∆t
)2−V (xk)]

(1.71)

The exponent can be further simpified in the limit n → ∞,

i

h̄
∆t

n∑

k=0

[
m

2
(
xk+1 − xk

∆t
)2 − V (xk)] →

i

h̄

t∫

t0

dt[
1

2
m(

dx

dt
)2 − V (x)] (1.72)

where we have now assumed that the sequence of intermediate positions xk (which
we integrate over) in the limit n → ∞ defines a differentiable curve. The expres-
sion we arrive at can be identified as the (classical) action associated with the
curve defined by the positions xk as functions of time,

S[x(t)] =

t∫

t0

L(x, ẋ) =

t∫

t0

(
1

2
mẋ2 − V (x)) (1.73)

In the continuum limit (n → ∞) we therefore write the propagator as

G(x t, x′ t0) =
∫

D[x(t)]e
i
h̄
S[x(t)] (1.74)
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The meaning of this expression is that we integrate over all possible paths x(t)
which interconnect the initial point x′ = x(t0) with the final point x = x(t), with
a complex weight factor determined by the classical action of the path. Note that
the discretized expression (1.71), with the correct normalization factors included
can now be thought of as defining the integration measure D[x(t)] of the path
integral. However, we have noticed some complications in the path integral ex-
pression. Thus, it is difficult to control the oscillations in the factor e

i
h̄
S[x(t)] unless

we impose some method (analytic continuation) to damp the exponential factor.
In the above derivation we have used the Hilbert space description of quantum

mechanics as starting point and discretized the time variable in order to approach
a situation where the intermediate positions define a continuous curve. However,
the path integral formulation, as originally discussed by Feynman, is usually con-
sidered to be a fundamental formulation of quantum mechanics, not limited to
the discrete formulation used here. This path integral description has several ap-
pealing features. The quantum evolution can be thought of as a sum over “all
possible histories” of the system, not only the one that is dynamically possible in
a classical theory. In this sence it is quite general, not limited to a system with
one dimension or with a given form of the Hamiltonian. But in general we should
expect that to give a precise definition to the integration measure may be highly
non-trivial. Even in the one-dimensional case we meet normalization factors that
diverge in the continuum limit.

1.2.3 Path integral for a free particle

The discretization of time is convenient to discuss the connection between the
Hamiltonian formulation and the path integral formulation of quantum mechanics.
However, the discretization is not faithful to the idea of the path integral as a sum
over contributions from (continuous) paths, since the points for different times are
integrated over independently. We will here try out another formulation which
respects more the idea of paths, and apply it to the example of a free particle.

We then consider a path as a (continuous) curve x(t) which connects an initial
point x0 = x(t0) with a final point x1 = x(t1), and denote the time difference as
T = t1 − t0. With the endpoints of the curve fixed, an arbitrary curve between
theese points can be written as

x(t) = xcl(t) +
∞∑

n=1

cn sin(nπ
t − t0

T
) (1.75)

where xcl(t) is a solution of the classical equation of motion with the given end
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points. The deviation from the classical curve is expanded in a Fourier series.
We shall now interprete the path integral as an independent integration over each
Fourier components cn. Note that for arbitrarily chosen coefficient we now have
a continuous curve.

The action for a free particle is given by

S[x(t)] =

t1∫

t0

dt
1

2
mẋ2

= S[xcl(t)] +
1

2
m

t1∫

t0

dt
∑

nn′
cncn′

nmπ2

T 2
cos(nπ

t − t0
T

) cos(mπ
t − t0

T
)

= S[xcl(t)] +
1

2
m

t1∫

t0

dt
∑

nn′
cncn′

nn′π2

T 2
cos(nπ

t − t0
T

) cos(n′π
t − t0

T
)

= S[xcl(t)] +
1

2
m

π∫

0

dφ
∑

nn′
cncn′

nn′π2

T
cos(nφ) cos(n′φ)

= S[xcl(t)] +
mπ2

4T

∑

n

n2c2
n (1.76)

For the propagator this gives

G0(x1 t1, x0 t0) =
∫

D[x(t)]e
i
h̄
S[x(t)]

= N e
i
h̄
S[xcl(t)]

∏

n

∫
dcnei mπ2

4Th̄
n2c2n (1.77)

In the last expression we have interpreted the path integral as an integral over the
Fourier coefficients cn, but we have also introduced a normalization factor, which
at this stage is unspecified. Also note that the integrals have to be made well-
defined by the same trick as before, by changing the imaginary coefficient to a
real one. This gives

G0(x1 t1, x0 t0) = N e
i
h̄
S[xcl(t)]

∏

n

(
2

n

√
iT h̄

mπ
)

= N ′e
i
h̄
S[xcl(t)]

= N ′e
i
h̄

1
2
m(

x1−x0
T

)2 (1.78)
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Note that the product is not well-defined separately from N and is absorbed in
the total normalization factor N ′, which we have not been able to determine. This
factor depends on the presise definition of the path integral.

We could alternatively had used the discrete time definition to derive the prop-
agator, and this would also have determined the normalization factor N ′. How-
ever, in this simple case the propagator can be avaluated directly, and we use the
expression to check our result from the path integral formulation,

G0(x1 t1, x0 t0) = 〈x1|e
i
h̄

p̂2

2m
T |x0〉

=
∫

dpe
i
h̄

p2

2m
T 〈x1|p〉〈p|x0〉

=
∫ dp

2πh̄
e

i
h̄
[ p2

2m
T+p(x0−x1)]

=

√
m

2πih̄T
ei

m(x−x′)2
2h̄T (1.79)

This agrees with the expression (1.78) and determines N ′. We note that the expo-
nential factor is determinet by the action of the classical path between the initial
and final points. A similar expression for the propagator, involving the action of
the classical path, can be found for any action that is quadratic in both q and q̇.

1.2.4 The classical theory as a limit of the path integral

One of the advanteges of the Feynman path integral is its close relation to the
classical theory. This is clear already from the formulation in terms of the classical
Lagrangian of the system. Let us formulate the path integral in the general form

G(qf tf , qi ti) =
∫

D[q(t)]e
i
h̄
S[q(t)]

=
∫

D[q(t)] exp(
i

h̄

tf∫

ti

L(q, q̇)dt) (1.80)

where the Lagrangian L(q, q̇) depends on a set of generalized coordinates q =
{qi} and their derivatives q̇ = {q̇i}. We note from this formulation that variations
in the path q(t) that give rise to rapid variations in the action S[q(t)] tend to give
contributions to the path integral that add destructively. This is so because of the
rapid change in the complex phase of the integrand.

The classical limit of a quantum theory is often thought of as a formal limit
h̄ → 0. From the expression for the path integral we note that smaller h̄ means
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more rapid variation in the complex phase. This indicates that in the classical limit
most of the paths will not contribute to the path integral, since variations in the
action from the neighbouring paths will tend to “wash out” the contribution. The
only paths which retain their importance are those where the action is stationary,
i.e., it does not change under small variations in the path.

The stationary paths are characterized by δS = 0, with

δS =

ti∫

ti

(
∂L

∂qi

δqi +
∂L

∂q̇i

δq̇i)dt

=

ti∫

ti

[∂L

∂qi

− d

dt
(
∂L

∂qi

)
]
δqidt (1.81)

In this expression δqi denotes an (infinitesimal) variation in the path, and δq̇i the
corresponding variation in the time derivative. The last expression in (1.81) is
found by a partial integration and applying the constraint on the variation that it
vanishes in the end points, δqi(ti) = δqi(tf ) = 0. This constraint follows from the
fact that the end points of the paths are fixed by the coordinates of the propagator
(1.80).

Thus, the important paths are those with stationary action, and these satisfy
the Euler-Lagrange equations,

∂L

∂qi

− d

dt
(
∂L

∂qi

) = 0 , i = 1, 2, ..., N (1.82)

since δS should be 0 for all (infinitessimal) variations. In a Lagrangian formu-
lation of the classical theory of a system with dynamics determined by L(q, q̇),
these are exactly the classical equations of motion. A simple example is provided
by a particle moving in a three-dimensional potential, where

L(�r, �̇r) =
1

2
�̇r

2 − V (�r) (1.83)

In this case it is straight forward to check that the Euler-Lagrange equations give
the Newton’s 2. law, in the form

m�̈r = −�∇V (�r) (1.84)



1.3. TWO-LEVEL SYSTEM AND HARMONIC OSCILLATOR 31

1.3 Two-level system and harmonic oscillator

The (one-dimensional) harmonic oscillator is an important system to study, both
in the context of classical and quantum physics. One reason is that in many re-
spects it is the simplest system with non-trivial dynamics to study, and physicists
always like to reduce more complicated problems to harmonic oscillators if pos-
sible. There are also many physical systems that are well described as harmonic
oscillators. All periodic motions close to (stable) equilibrium can be viewed as
approximate harmonic oscillator motions, and the modes of free (non-interacting)
fields can be viewed, both classically and quantum mechanically, as harmonic
oscillators.

Even if the harmonic oscillator, in many respects, can be regarded as the sim-
plest (most fundamental) system to study, there is a quantum mechanical system
that in a sense is even more fundamental, the two-level system. A special realiza-
tion of this is the spin-half system already discussed. There are also other physical
systems which, to a good approximation, can be regarded as a two level system.
One example is an atomic system with two (almost) degenerate ground states,
where the dynamics can be described as a transition (tunneling) between these
two states. Atomic clocks are quantum systems of this type. Also for transitions
between atoms with many energy levels often only two of the levels will be active
in the transition and a two-level model is adequate.

As opposed to the harmonic oscillator there is no classical analogue to the
quantum two-level system. Classical spin does of course exist, but that correspond
to many-level “high-spin” quantum systems rather than to the simplest spin-half
system. In recent years the interest for two-level systems have increased with the
interest for “quantum information” since the fundamental ”qubit” is described by
a two-level system.

Inn this section we will study these two fundamental systems, first the two-
level system.

1.3.1 The two-level system

The Hilbert space of this system is two-dimensional. Let us denote by {|k〉, k =
0, 1} the basis vectors of an arbitrarily chosen orthonormal basis. Any state vector
can be represented as a two-component, complex matrix Ψ,

|ψ〉 =
1∑

k=0

ψk |k〉 ⇒ Ψ =
(

ψ1

ψ0

)
(1.85)
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An operator Â acting in this space has four independent components and can be
represented as a 2 × 2 matrix A,

Â|k〉 =
∑

l

Alk |l〉 ⇒ A =
(

A11 A12

A21 A22

)
(1.86)

It can be expressed in terms of the unit matrix and the Pauli spin matrices as,

A = a01 +
∑

m

amσm (1.87)

with

a0 =
1

2
(A11 + A22) , a1 =

1

2
(A12 + A21) ,

a2 =
i

2
(A12 − A21) , a3 =

1

2
(A11 − A22) (1.88)

When Â is hermitean, all the coefficients ak are real. The Pauli matrices are
represented as

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)

They define the fundamental commutator relations of the observables of the
two level system,

[σi, σj] = 2iεijkσk (1.89)

where εijk is the Levi-Civita symbol, which is totally antisymmetric in the indices
ijk and satisfy ε123 = 1 . The Pauli matrices also satisfy the anti-commutation
relations

{σi, σj} = 0 (1.90)

Let us consider a general (“rotated”) Pauli matrix

σn = n · σ =
(

cos θ e−iφ sin θ
eiφ sin θ − cos θ

)
(1.91)

with n as a (three-component) unit vector. The two eigenstates of this operator
are

|n〉 =
1√
2

(
e−iφ cos θ

2

sin θ
2

)
, | − n〉 =

1√
2

(−e−iφ sin θ
2

cos θ
2

)
(1.92)
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with |n〉 as the “spin up” state in the n direction and | − n〉 as the “spin down”
vector. We note that any vector in the two-dimensional state space can, up to a nor-
malization factor, be written in the form of |n〉 for some vector n. This implies that
the physically distinct state vectors of the two-level system has the topology of a
two-dimensional sphere. They can be identified uniquely by the three-dimensional
unit vector n. Note however, the difference with a classical configuration space
with the topology of a sphere. In the latter case all the points on the sphere cor-
respond to independent configurations. In the quantum two-level model, there are
only two independent states, |0〉 (the“south pole”) and |1〉 (the“north pole”). All
other points on the sphere correspond to linear superpositions of these.

1.3.2 Spin dynamics and magnetic resonance

The spin realization of the two-level system has already been briefly discussed in
the context of the Stern-Gerlach experiment. We here consider the spin dynamics
in a constant magnetic field in more detail and proceed to show how to solve a
time-dependent problem, where the spin is subject to a periodic field.5

The basic observables of the spin half-system are are the three components of
the spin vector

Ŝ = (h̄/2)σ (1.93)

where σ is a vector matrix with the three Pauli matrices as components. They
correspond to the three space components of the spin vector.

The observable Ŝ we will identify as the spin of an electron. The correspond-
ing magnetic moment is given by

µ =
e

mec
Ŝ (1.94)

where e is the electron charge and me is the electron mass. The spin Hamiltonian
is

Ĥ = − e

mec
B · Ŝ. (1.95)

The Heisenberg equation of motion for the spin, which follows from (1.49) is

d

dt
ŜH = ωcn × ŜH , (1.96)

5The effect of a magnetic field on the electron spin, with its corresponding changes in the
atomic levels, is usually referred to as the Zeeman effect.
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where

ωc = − eB

mec
. (1.97)

and n̂ is a unit vector B = Bn.6 Eq.(1.96) has exactly the same form as the
classical spin presession equation with ωc as the presession frequency. A natural
interpretation is then that the quantum spin presesses in the magnetic field in the
same way as the classical spin. However, as our discussion of the Stern-Gerlach
experiment has shown the non-commutativity of the different components of Ŝ
makes the quantum spin variable qualitatively different from the classical spin.

The expression for the Hamiltonian (1.95) can be simplified by the choce of
coordinate axes. If we choose the (1,2,3) components of the Pauli spin matrices
to correspond to the (x, y, z) directions in space, and eB to point in the positive
z-direction, the Hamiltoniangets the form

Ĥ = − e

mec
B Ŝz

=
1

2
h̄ωcσz. (1.98)

The corresponding time evolution operator is

Û(t) = e−
i
h̄

Ĥt = e−
i
2
ωcσzt (1.99)

and shows explicitely the rotation around the z-axis.
We now proceed to examine a two-state problem with a time-dependent Hamil-

tonian, which is directly relevant for the so-called spin magnetic resonance. The
system is the spin variable of a (bound) electron in a magnetic field B which now,
in addition to a constant part has an oscillating part,

B = B0 k + B1(cos ωt i + sin ωtj). (1.100)

Both B0 and B1 are constants. The oscillating field is due to a circularly polarized
electromagnetic field interacting with the electron.

The time variation of B gives rise to a time-dependent Hamiltonian. Usually
a time-dependent problem like this is highly non-trivial, and can only be solved

6ωc may be chosen to be positive by choosing eB negative. For the electron, with e < 0 this
means choosing n in the direction of B, so that B is positive. For a particle with positive charge
e n is chosen in the opposite direction of B, so that B is negative.
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within some approximation scheme. But the present problem can be solved ex-
actly. We show this by rewriting the Hamiltonian in the following form

Ĥ = − e

mec
[B0 k + B1(cos ωt i + sin ωtj)] · Ŝ

= − e

mec
[B0Ŝz + B1(cos ωt Ŝx + sin ωt Ŝy)]

= − e

mec
e−

i
h̄

ωtŜz [B0Ŝz + B1Ŝx]e
i
h̄

ωtŜz (1.101)

where the last expression follows from the commutation relations between the
components of Ŝ. This form for the Hamiltonian shows that it can be transformed
to a time-independent form by a unitary transformation. In fact, the Hamilto-
nian can be transformed into the spin Hamiltonian (1.95) that we have already
discussed.

In order to show this we perform the time-dependent transformation

|ψ(t)〉 → |ψ(t)〉1 = e
i
h̄

ωtŜz |ψ(t)〉 (1.102)

The transformed state vector satisfies the modified Schrödinger equation

ih̄
d

dt
|ψ(t)〉1 = [e

i
h̄

ωtŜzĤe−
i
h̄

ωtŜz − ωŜz]|ψ(t)〉1 (1.103)

This is the Schrödinger equation for a time-independent Hamiltonian of the form

Ĥ1 = e
i
h̄

ωtŜzĤe−
i
h̄

ωtŜz − ωŜz

= − e

mec
[B0Ŝz + B1Ŝx] − ωŜz

=
1

2
h̄[(ω0 − ω)σz + ω1σx] (1.104)

where we have introduced ω0 = −eB0/(mec) and ω1 = −eB1/(mec). The
transformation above can be interpreted as changing to a rotating reference frame,
where the magnetic field looks time-independent.

If we now intruduce the parameters

Ω =
√

(ω0 − ω)2 + ω2
1 (1.105)

and

cos θ =
ω0 − ω

√
(ω0 − ω)2 + ω2

1

, sin θ =
ω1√

(ω0 − ω)2 + ω2
1

(1.106)
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the transformed Hamilton gets the form

Ĥ1 =
1

2
h̄Ω (cos θσz + sin θσx) (1.107)

It has the same form as (1.98) except the magnetic field is rotated by an angle θ
relative to the z-axis. Thus, the time evolution in the transformed frame is simply

Û1(t) = e−
i
2
Ωt (cos θσz+sin θσx) (1.108)

Now the time evolution operator, in the original frame, can be found by apply-
ing the time dependent transformation in reverse,

Û(t) = e−
i
2
ωtσz Û1(t)

= e−
i
2
ωtσze−

i
2
ωt(cos θσz+sin θσx) (1.109)

which in matrix form is

Û(t) =

(
e−

i
2
ωt 0

0 e
i
2
ωt

) (
cos Ωt

2
− i cos θ sin Ωt

2
−i sin θ sin Ωt

2

−i sin θ sin Ωt
2

cos Ωt
2

+ i cos θ sin Ωt
2

)

=

(
(cos ωt

2
− i cos θ sin Ωt

2
)e−

i
2
ωt −i sin θ sin Ωt

2
e−

i
2
ωt

−i sin θ sin Ωt
2
e

i
2
ωt (cos Ωt

2
+ i cos θ sin Ωt

2
)e

i
2
ωt

)

(1.110)

The above result shows that the time-varying magnetic field B1 will induce os-
cillations in the spin between the two eigenstates |0〉 and |1〉 of the time-independent
spin Hamiltonian Ĥ0 = −h̄eB0/(mec)σz,

|ψ(t)〉 = c0(t)|0〉 + c1(t)|1〉 (1.111)

Let us choose as initial conditions,co(0) = 1, c1(0) = 0, which means that the
spin starts in the ground state of Ĥ0. This gives,

c0(t) = (cos
ωt

2
+ i cos θ sin

Ωt

2
)e

i
2
ωt

c1(t) = −i sin θ sin
Ωt

2
e

i
2
ωt (1.112)

The time-dependent occupation probability of the upper level is

|c1(t)|2 = sin2 θ sin2 Ωt

2
(1.113)
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Figure 1.3: Rabi oscillations in a two-level system, caused by an oscillating field.
The oscillations in the occupation of the upper level are shown as function of time.
The oscillations are shown for three different values of the detuning parameter
(ω0 − ω)/ω1.

The amplitude of the oscillations is

sin2 θ =
ω2

1

(ω0 + ω)2 − ω2
1

(1.114)

The expression shows a resonance effect, when the frequency of the oscillating
field matches the energy difference between the two levels, ω = ω0. For this
frequency the maximum value of |c1(t)|2 is 1, which means that there is a com-
plete transitions between the two levels |0〉 and |1〉 during the oscillations. The
frequency of the oscillations is

Ω =
√

(ω0 − ω)2 + ω2
1 (1.115)

with a resonance value

Ωres = |ω1| = |eB1

mec
| (1.116)

Thus, the frequency depends on the amplitude of the oscillating field. In Fig.1.3.2
the oscillations are shown as a function of time
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The model studied here has important applications in the context of nuclear
magnetic resonance and in atomic beam physics. It is often referred to as the Rabi
effect, and the oscillation frequency is called the Rabi frequency.

1.3.3 Harmonic oscillator and coherent states

The Hamiltonian of a one-dimensional (quantum) harmonic oscillator we write in
the standard way as

Ĥ =
1

2m
(p̂2 + m2ω2x̂2) (1.117)

which means that it is realized as the energy observable of a particle with mass m
in the oscillator potental V̂ = (ω2/2m)x̂2.

The most elegant approach to solve the energy eigenvalue problem is the al-
gebraic method shown in all introductory text books on quantum mechanics. It is
based on the closed commutator algebra formed by the operators x̂, p̂ and Ĥ , 7

[x̂, p̂] = ih̄ ,
[
x̂, Ĥ

]
= i

h̄

m
p̂ ,

[
p̂, Ĥ

]
= −ih̄mω2x̂ (1.118)

This is conveniently reformulated in terms of the raising and lowering operators

â =
1√

2mh̄ω
(mωx̂ + ip̂) , â† =

1√
2mh̄ω

(mωx̂ − ip̂) (1.119)

which gives

Ĥ =
1

2
h̄ω(ââ† + â†â)) (1.120)

The commutator algebra is now reformulated as
[
â, â†

]
= 1 ,

[
Ĥ, â

]
= −ah̄ω ,

[
Ĥ, â†

]
= â†h̄ω (1.121)

We briefly summerize the construction of energy eigen states. Since Ĥ is a
positive definite operator, there is a lowest energy state, which is annihilated by
â,

â|0〉 = 0 (1.122)

7The commutator algebra of the observables defines a Lie algebra. When the Hamiltonian
belongs to such a finite-dimensional Lie algebra, the general methods for finding representations
of the Lie algebra can be used to construct the eigenstates and find the eigenvalues of the Hamil-
tonian.)
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The repeated application of â† on this state generate a series of states |n〉, n =
0, 1, 2, ..., which according to the commutator with Ĥ all are energy eigenstates.
These states form a complete set of states in the Hilbert space. The explicit action
of the operators on these states follows from the algebraic relations and are here
summerized as

â|n〉 =
√

n|n − 1〉
â†|n − 1〉 =

√
n|n〉 ,

Ĥ|n〉 = h̄ω(n +
1

2
)|n〉 (1.123)

Expansion of state vectors |ψ〉 in the orthonormal basis {|n〉} defines a repre-
sentation which we shall refer to as the n-representation. The transition between
this representation and the standard coordinate (or x-) representation is defined by
the matrix elements

〈x|n〉 ≡ ψn(x) (1.124)

For given n this corresponds to the energy eigenfunction in the coordinate repre-
sentation. We refer to standard treatments of the harmonic oscillator, where these
eigenstates are expressed in terms of Hermite polynomials.

After this brief reminder on standard treatments of the harmonic oscillator, we
turn to the main team of this section, which is discussion of the so-called coherent
states. These are defined as the eigenstates of the annihilation operator â,

â|z〉 = z|z〉 (1.125)

What is unusual about this definition of states is that â is not a hermitian operator
(and therfore not an observable in the usual sense). However, the states |z〉 defined
in this way do form a complete set, in fact an overcomplete set, and they define a
new representation, the coherent state representation with many useful properties.

Note that, since â is non-hermitian, the eigenvalues z will in general be com-
plex rather than real. Based on the relation between â with x̂ and p̂ it is useful to
write z as,

z =
1√

2mh̄ω
(mω xc + ipc) (1.126)

This indicates that z can be interpreted as a complex phase space variable, with
Rez proportional to x and Imz proportinal to p. However, since x has already
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been used for the eigenvalues of x̂ and p for p̂, we have introduced xc and pc for
the phase-space components of z. Such a distinction is necessary, since |z〉 is not
an eigenstate for x̂ and p̂, although both x and p will be strongly peaked around xc

and pc, respectively. Expressed in terms of the expectation values we have have

〈z|â|z〉 = z , 〈z|â†|z〉 = z∗ (1.127)

which for the expectation values of position and momentum gives

〈x〉z = xc , 〈p〉z = pc (1.128)

To study the coherent states further we first focus on the ground state of the
harmonic oscillator which is a coherent state with z = 0, as follows from (1.122).
For the ground state we have the following expectation values for x and p, in the
ground state,

〈x〉0 = 〈p〉0 = 0

〈x〉20 =
h̄

2mω
〈0|(â + â†)(â + â†)|0〉 =

h̄

2mω

〈p〉20 =
mωh̄

2
〈0|(â − â†)(â − â†)|0〉 =

mωh̄

2
(1.129)

From this follows that the uncertainties in x and p for the ground state satisfy

∆x2
0∆p2

0 =
h̄

2mω

mωh̄

2
=

h̄2

4
(1.130)

This is the minimum value for the product allowed by Heisenberg’s uncertainty
principle. Thus, the ground state is a minimum uncertainty state. A similar calcu-
lation for the excited states show that they are not,

∆x2
n∆p2

n =
h̄2

4
(2n + 1)2 (1.131)

We shall proceed to show that all coherent states are minimum uncertainty states.
Since they are optimally focussed in x and p the coherent states are the quantum
states that are closest to the classical states, which are defined as points in phase
space.

To show this we introduce the unitary operator

D̂(z) = e(zâ†−z∗â)

= e
i
h̄
(pcx̂−xcp̂) (1.132)



1.3. TWO-LEVEL SYSTEM AND HARMONIC OSCILLATOR 41

where z is a complex number, related to xc and pc (1.126). It is the quantum
version of a displacement operator in phase space. It transform â and â† as

D̂(z)†âD̂(z) = â + z , D̂(z)†â†D̂(z) = â† + ζ∗ (1.133)

which is shown by use of the Campbell-Baker Hasdorff formula

eB̂Âe−B̂ = A +
[
B̂, Â

]
+

1

2

[
B̂,

[
B̂, Â

]]
+ ... (1.134)

It acts on x and p in the following way

D̂(z)†x̂D̂(z) = x̂ + xc , D̂(z)†p̂D̂(z) = p̂ + pc (1.135)

which explains the interpretation of D̂ as a displacement operator in phase space.
With the displacement operator D̂ acting on the ground state a continuum of

new states can be generated,

|z〉 = D̂(z)|0〉 (1.136)

and it is straight forward to demonstrate from the above relations that these are
coherent states as defined by (1.125). The eigenvalues z take all values in the
complex plane, which means that there is one coherent state for each point in the
(two-dimensional) phase space. Furthermore, since D̂(z) simply adds a constant
to observables x̂ and p̂, which means that x̂ − 〈x〉 and p̂ − 〈p〉 are unchanged by
the displacements, the shifted state |z〉 has the same uncertainy in x and p as the
ground state. Thus, all coherent states |z〉 are minimum incertainty states.

Coherent states in the coordinate representation
The coordinate representation of the coherent states are defined by

ψz(x) = 〈x|z〉 (1.137)

where the bra corresponds to a postion eigenstate and the ket to a coherent state.
The z = 0 state is the ground state of the harmonic oscillator and is known to have
the gaussian form

ψ0(x) = (
mω

πh̄
)

1
4 e−

mω
2h̄

x2

(1.138)

This expression can readily be generalized to arbitrary coherent states, since they
satisfy a linear differential equation

1√
2mh̄ω

(mωx + h̄
d

dx
)ψz(x) = zψz(x) (1.139)
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or,

d

dx
ψz(x) = (−mω

h̄
x +

√
2mω

h̄
z) ψz(x) (1.140)

The equation has the solution

ψz(x) = Nze
−(mω

2h̄
x2−

√
2mω

h̄
zx) (1.141)

where Nz is a z-dependent normalization factor. We rewrite it in the form

ψz(x) = N ′
ze

−(mω
2h̄

(x−xc)2− i
h̄

xpc) (1.142)

with a new normalization factor N ′
z. The phase space coordinates xc and pc corre-

spond to the real and imaginary parts of z as given by (1.126) The normalization
integral determines N ′

z to be, up to a phase factor, the same as the prefactor of
the ground state wave function (1.138) . At this stage the phase factor is arbitrary.
However, implicitely this phase has already been fixed by the definition (1.136).
To show this we shall find the expression for ψz(x) in alternative, more direct way.

ψz(x) = 〈x|D̂(z)|0〉
= 〈x|e i

h̄
(pcx̂−xcp̂)|0〉

= e
i

2h̄
xcpc〈x|e i

h̄
pcx̂e−

i
h̄

xcp̂)|0〉
= e

i
2h̄

xcpce
i
h̄

pcxe−xc
d

dx 〈x|0〉
= e

i
2h̄

xcpce
i
h̄

pcxψ0(x − xc)

(1.143)

In this calculation we have used that exp(− i
h̄
xcp̂) is a translation operator in x-

space. With the ground state wave function given by (1.138), the full expression
for the coherent state in the x-representation is

ψz(x) = (
mω

πh̄
)

1
4 e−(mω

2h̄
(x−xc)2− i

h̄
xpc− i

2h̄
xcpc) (1.144)

This expression agrees with (1.142) and also gives the expression for the x-independent
phase factor of the normalization factor.
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Time evolution of coherent states
In the Heisenberg picture the time evolution of the creation and annihilation oper-
ators are

â†(t) = Û(t, 0)† â† Û(t, 0)

= eiωâ†ââ†e−iωâ†â

= eiωtâ† (1.145)

and

â(t) = Û(t, 0)† â Û(t, 0)

= eiωâ†ââe−iωâ†â

= e−iωtâ (1.146)

From the last one follows,

â Û(t, 0)|z〉 = e−iωtÛ(t, 0)â|z〉 = e−iωtz Û(t, 0)|z〉 (1.147)

which gives the time evolution

Û(t, 0)|z〉 = eiα(t)|e−iωtz〉 (1.148)

where α(t) is an undetermined complex phase. The equation shows that a coherent
state continues to be a coherent state during the time evolution. This means that it
keeps it property of maximal localization in the phase space variables. The motion
is given by

z(t) = e−iωt z(0) (1.149)

which means for the real and imaginary parts

mω xc(t) = cos ωt mω xc(0) + sin ωt pc(0)

pc(t) = cos ωt pc(0) − sin ωt mω xc(0) (1.150)

This shows that the coherent state moves in such a way that the phase space vari-
ables xc and pc change in exactly the same way as the variables of a classical
harmonic oscillator. This is consistent with Ehrenfest’s theorem, since xc and pc

coincide with the expectation values 〈x〉 and 〈p〉. Since the coherent states keeps
their (maximal) localization, they are as close as we can get to classical states
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within the quantum description.

The coherent state representation
The coherent states are expressed in the n-representation in the following way

〈n|z〉 = 〈n|D̂(z)|0〉
= 〈n|e(zâ†−z∗â)|0〉
= 〈n|e− 1

2
|z|2ezâ†

e−z∗â|0〉
= e−

1
2
|z|2〈n|ezâ†|0〉

= e−
1
2
|z|2〈n|

∞∑

m=0

zm

m!
(â†)m|0〉

= e−
1
2
|z|2 zn

√
n!

(1.151)

From this follows that the overlap between two coherent states is

〈z|z′〉 =
∑

n

〈z|n〉〈n|z′〉

= e−
1
2
(|z|2+|z′|2)

∑

n

(z′z∗)n

n!

= e−
1
2
(|z|2+|z′|2)+z′z∗

(1.152)

and the absolute value is

|〈z|z′〉| = e−
1
2
|z−z′|2

(1.153)

The coherent states corresponding to two different values of z are not orthogonal
states, but the overlap falls off exponentially fast with the distance between the two
points. This overlap gives a measure of the intrinsic uncertainty of the coherent
state as a probability amplitude in phase space.

An interesting property of the coherent states is that, even if they are not or-
thogonal, they satisfy a completeness relation. To see this we calculate the inte-
gral

∫
d2z|z〉〈z| =

∫
d2ze−|z|2 ∑

n,m

znz∗m

√
n!m!

|n〉〈m|
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=

2π∫

0

dθ

∞∫

0

drre−r2 ∑

n,m

r(n+m)

√
n!m!

eiθ(n−m)|n〉〈m|

= 2π

∞∫

0

dre−r2 ∑

n

r2n+1

n!
|n〉〈n|

= π
∑

n

|n〉〈n|

= π 1̂ (1.154)

We rewrite this as the completeness relation
∫ d2z

π
|z〉〈z| = 1̂ (1.155)

With the help of the completeness relation the coherent state representation
can be defined as an alternative to the coordinate representation and the momen-
tum representation. The wave function, which is a function of the complex phase
space variable z, is defined by the state vector |ψ〉 as

ψ(z) = 〈z|ψ〉 (1.156)

and the inverse relation is

|ψ〉 =
∫ d2z

π
|z〉〈z|ψ〉 =

∫ d2z

π
|z〉ψ(z) (1.157)

One of the implications of the above relation is that the coherent states do not
form a linearly independent set of states, they form instead an overcomplete set.
Thus,

|z〉 =
∫ d2z′

π
|z′〉〈z′|z〉 =

∫ d2z′

π
|z′〉e− 1

2
(|z|2+|z′|2)+z′∗z (1.158)

which demonstrates the lack of linear independence. A consequence of this is
that the expansion of a state vector |ψ〉 in terms of the coherent states cannot be
uniquely defined. Nevertheless, the expansion given by (1.157) is unique because
of constraints that implicitely are posed on the wave functions ψ(z). To se this we
rewrite it in terms of the n-representation

ψ(z) =
∑

n

〈z|n〉〈n|ψ〉

=
∑

n

〈n|ψ〉e− 1
2
|z|2 z∗m

√
n!

≡ e−
1
2
|z|2f(z∗) (1.159)
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The function

f(z∗) =
∑

n

〈n|ψ〉 z∗m

√
n!

(1.160)

is an analytic function of z∗ since it depends only on z∗ and not on z. This is the
constraint on the wave functions ψ(z) that makes the coherent state representation
well-defined, the wave functions are up to a common factor e−

1
2
|z|2 restricted to

be analytic functions.
Thus, wave functions and observables of the originally one-dimensional prob-

lem can be rewritten in terms of analytic functions defined on the two-dimensional
phase space. One should, however, be aware of the fact that that several relations
in this representation are unfamiliar, because of the non-orthogonality between
the basis states |z〉.

The coherent states are important in many respects because of their close re-
lation with classical states. They were introduced in the context of the quantum
description of light, where they describe states of classical light within the quan-
tum theory.

1.3.4 Fermionic and bosonic oscillators: an example of super-
symmetry

There is a formal similarity between the two-level system which we shall examine
in this section. To make the similarity explicit, we write the Hamiltonian of the
two-level system as

ĤF =
1

2
h̄ωσz (1.161)

and introduce the raising and lowering operators

b̂† = σ+ =
1

2
(σx + iσy) , b̂ = σ− =

1

2
(σx − iσy) (1.162)

In matrix form the operators are are

ĤF =
1

2
h̄ω

(
1 0
0 −1

)
, b̂† =

(
0 1
0 0

)
, b̂ =

(
0 0
1 0

)

We now have the algebraic relations

{
b̂, b̂†

}
= 1 , ĤF =

1

2
h̄ω

[
b̂†, b̂

]
(1.163)
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where
{
b̂, b̂†

}
is the anticommutator b̂b̂† + b̂†b̂. The corresponding relations for a

harmonic oscillator are

[
â, â†

]
= 1 , ĤB =

1

2
h̄ω

{
â†, â

}
(1.164)

We note that the (formal) transition between the two systems corresponds to in-
terchanging commutators with anticommutators.

There are many physical realizations of these two systems. We will now focus
on a simple many-particle realization. Let us assume that a single state is available
for many identical particles. The state may be considered to be one of the field
modes of a free field. The identical particles may be either fermions or bosons.

In the fermion case the the state space will contain only two states. |0〉 is the
vacuum state with no particle present and |1〉 is the excited state with one particle
present. Due to the Pauli exclusion principle the single-particle state cannot be
occupied by more than one particle. The occupation energy of this state is h̄ω.
With this interpretation of the two-level system the operator b̂† is a creation oper-
ator for a fermion and b̂ is an annihilation operator. The Hamiltonian is defined
so that the vacuum energy is −1

2
h̄ω.

In the boson case there is an infinite number of states, since the single-particle
state can be occupied by an arbitrary number of particles. The states |n〉 now are
interpreted as states with n bosons present. The operator â† is a creation operator
for bosons and â an annihilation operator. The boson vacuum state has a vacuum
energy +1

2
h̄ω which is the ground state energy of the harmonic oscillator.

With the interpretation above in mind we may refer to the two-level system as
a fermionic oscillator and the standard harmonic oscillator as a bosonic oscillator.

In recent years the idea has been extensively developed that nature has a (hid-
den) symmetry between fermions and bosons called supersymmetry. There is at
this stage no physical evidence for the presence of this symmetry as a fundamental
symmetry of nature. Nevertheless the idea has been pursued, since supersymme-
try is an important input in string theories and supergravity theories.

We discuss here a simple realization of supersymmetry (or Fermi-Bose sym-
metry) as a symmetry for the two-level model and the quantum harmonic oscilla-
tor.

The symmetrized model has a Hamiltonian that can be written as a sum of the
two Hamiltonians

Ĥ = ĤF + ĤB =
1

2
h̄ω[

{
â†, â

}
+

[
b̂†, b̂

]
] (1.165)
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Figure 1.4: The energy spectrum of a supersymmetric oscillator. The bosonic cre-
ation operator â† acts vertically, while the fermionic creation operator b̂† acts in the
diagonal direction. The supercharge Q̂ is a symmetry operator that maps between
pairs of degenerate excited states. The ground state which is non-degenerate is
annihilated by Q̂ and Q̂†.

Since the level spacing of the two Hamiltonians have been chosen to be equal
there is a double degeneracy of all the excited levels, while the ground state is
non-degenerate, as shown in Fig.1.3.4.

The supersymmetry is made explicit in terms of a supercharge, defined as

Q̂ =
√

h̄ω â†b̂ , Q̂† =
√

h̄ω âb̂† (1.166)

Together with the Hamiltonian it defines a supersymmetry algebra
{
Q̂, Q̂†

}
= Ĥ

[
Q̂, Ĥ

]
=

[
Q̂†, Ĥ

]
= 0
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{
Q̂, Q̂

}
= 2Q̂2 = 0

{
Q̂†, Q̂†

}
= 2Q̂†2 = 0 (1.167)

This is not a standard Lie algebra, since it involves both commutators and anti-
commutators. It is referred to as a graded Lie algebra. Q̂ and Q̂† are the fermionic
(or odd) elements and Ĥ is the bosonic (or even) element of this graded algebra.

The supersymmetry gives, as a general feature, a vacuum energy which is 0,
due to cancellation of the contributions from the bosonic and fermionic variables.
This type of cancellation is important in supersymmetric quantum field theories,
where the divergent contributions to the vacuum energy are avoided.

1.4 Problems

1.4.1 Time evolution operator

Let us assume that the dynamics of a quantum system is determined by a time-
dependent Hamiltonian Ĥ(t). Show that the corresponding Schrödinger equation
can formally be integrated from an initial time t0 to a final time t and that this
expression can be used to give the time evolution operator of the form (1.43).
To find this expression, use the integrated Schrödinger equation iteratively, with
the term containing Ĥ(t) (right-hand side) as the input term. As first input use
|ψ(t)〉 = |ψ(t0)〉. Use then the output expression (left-hand side) for |ψ(t)〉 as the
new input etc. This gives an expression for |ψ(t)〉 which can be written as a sum
of terms with an increasing number of Hamiltonians acting on |ψ(t0)〉. From this
expression the time evolution operator can be extracted.

1.4.2 Operator identities

Assume Â and B̂ to be two operators, generally not commuting.
a) Show the following relation (Campbell-Baker-Hausdorff)

eλÂB̂e−λÂ = B̂ + λ
[
Â, B̂

]
+

λ2

2

[
Â,

[
Â, B̂

]]
... (1.168)

by expanding in powers of λ.
b) Show in a similar way the relation

eλÂeλB̂ = eλÂ+λB̂+λ2

2 [Â,B̂]+ ... (1.169)
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If
[
Â, B̂

]
commutes with both Â and B̂ show that (1.169) is exact without higher

order terms indicated by ... .

1.4.3 Ehrenfest’s theorem

A (quantum) particle with mass m moves in a potential V (x). Show that the ex-
pectation values 〈x〉 and 〈p〉 satisfy similar equations of motion as those of a clas-
sical particle in the potential V (x). Is there any difference? Discuss under what
conditions the classical and quantum expectation value equations are essentially
identical.

1.4.4 Gaussian wave function

A wave function for a free particle with mass m in one dimension is in the mo-
mentum representation described by the Gaussian

ψ(p) = Ne−
λ
2
(p−p0)2 (1.170)

λ is a parameter that determines the width of the Gaussian and N is a normaliza-
tion factor. Find the corresponding time dependent wave function ψ(x, t) in the
coordinate representation. Show that |ψ(x, t)|2 is a Gaussian and examine how
the maximum of the wave packet moves with time and how the width changes.

1.4.5 Potential step

A particle of mass m moves in a one-dimensional potential. The potential is
piecewise constant with V = 0 for x < 0 and V = −u for x > 0. Initially the
particle is moving towards the potential step with position x < 0 and momentum
p > 0. The problem is to compare the motion of a classical particle with that
of a quantum particle. Somewhat surprisingly there is an important qualitative
difference.

First, discuss what happens to a particle according to the classical description.
Next, solve the quantum problem for a stationary situation where the incoming
particle is described by a plane wave moving towards the potential step. Is there
a difference between the behaviour of the particle in the classical and quantum
description? Consider the limit of an infinitely deep step, u → ∞.

Can the above result be reconciled with Ehrenfest’s theorem? To examine
this, introduce a wave packet for the incoming particle by modulating the station-
ary state with a Gaussian function of the incoming momentum, as discussed in
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problem (1.4.4). Examine first the motion of the incoming and outgoing particle
in terms of maxima of the wave packets. Also consider the form of the transmitted
wave. Is the Gaussian form perserved when passing the potential jump?

In order to do the momentum integrations some simplifications have to be
made:
– In the momentum-dependent amplitudes of the reflected and transmitted waves
replace the momentum variable p with its peak value p0.
– Also consider p to be small at the scale set by the potental step, p <<

√
2mu.

1.4.6 Stationary phase

A simpler way to determine the motion of the maximum of a wave packet is to
use a ”stationary phase argument”. Instead of intruducing an explicit (Gaussian)
wave function profile, we consider the k-dependence of the plane waves of the
incoming and outgoing particle. The plane waves will in general have the form

ψ(x, t) = Nei(kx− h̄k2t
m

+α(k)) (1.171)

where N is a real normalization factor and α is a (k-dependent) phase factor. Let
us assume that the real wave function does not have a single momentum compo-
nent like in (1.171), but it is strongly peaked around the value h̄k in momentum
space. The stationary phase argument states that the corresponding x-space wave
function is peaked around a point (in x-space) determined by the condition that
the phase factor of (1.171) is stationary with respect to variations in k. This gives
the free particle motion

x = x0 + vt (1.172)

with

x0 =
∂α

∂k
, v =

h̄k

m
(1.173)

Use the is stationary phase argument to study the motion of the particle in (1.4.5)
and check that the result is the same as found for the motion of the peak of the
wave packets.
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1.4.7 Faster than light?

Consider the tunneling of a particle through a piecewise constant potential

V (x) =






0 x < −a
V0 −a < x < a
0 a < x

(1.174)

Let us assume that a particle of mass m approaches the potential barrier from the
left with an energy smaller than V0. There is a certain probability of the particle
to be scattered back from the barrier and a probability for the particle to tunnel
through.

An interesting question concerns the tunneling time of the particle through the
potential barrier. There are arguments that the particle penetrate the potential with
a speed which is larger than that of the incoming free particle. Indeed there exist
claims that in a corresponding optical system the effect can be used to send signals
faster than light.

Examine, by use of the stationary phase argument, both the delay time of the
reflected wave and the tunneling time of the transmitted wave. What happens
when a increases? Does the result give support for the claim that the barrier
speeds up the particle (even to superluminal speed)? Check that also in this case
Ehrenfests theorem is satisfied.

1.4.8 Forced harmonic oscillator

A one-dimensional oscillator is subject to a periodic perturbation. The Hamilto-
nian of the oscillator has the form

Ĥ = Ĥ0 + Ĥ1(t) (1.175)

with

Ĥ0 =
1

2m
(p̂2 + m2ω2

0x̂
2) , Ĥ1(t) = Fx̂ cos(ωt) (1.176)

F gives the strength of the perturbation, and ω the frequency of the perturbation,
which we consider as variable, while the oscillator frequency ω0 is fixed.

Use the expression for the time-evolution operator in the interaction picture to
find the time development of a state that starts in the ground state of Ĥ0 at time
t = 0. Determine the state as a function of time only to first order in Ĥ1. Find the
time evolution of the expectation value 〈x〉. What happens when the frequency ω
gets close to ω0?
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1.4.9 Schwinger representation for angular momenta

Let â1, â
†
1 and â2, â

†
2 be the annihilation and creation operators of two independent

harmonic oscillators. A set of quadratic operators are defined by

Ĵ1 =
h̄

2
(â†

2â1 + â†
1â2)

Ĵ2 =
ih̄

2
(â†

2â1 − â†
1â2)

Ĵ3 =
h̄

2
(â†

1â1 − â†
2â2)

ĵ =
h̄

2
(â†

1â1 + â†
2â2)

(1.177)

Show that the operators satisfy the angular momentum commutation relations
[
Ĵ1, Ĵ2

]
= ih̄Ĵ3 (+ cyclic permutations)

Ĵ2 = ĵ(ĵ + 1)h̄2 . (1.178)

1.4.10 Displacment operator in phase space

Show that the operator

D̂(ζ) = e(ζâ†−ζ∗â) (1.179)

acts as a displacement operator in phase space, in the sense

D̂(ζ)x̂D̂(ζ)† = x̂ − ξ , D̂(ζ)p̂D̂(ζ)† = p̂ − ν (1.180)

where

ζ =
1√

2mh̄ω
(mω ξ + iν) (1.181)

Does the displacement operator in the x-direction,D̂(
√

mω
2h̄

ξ) commute with that

in the p-direction,D̂( 1√
2mh̄ω

iν)? Find a relation between the two products

D̂(
√

mω
2h̄

ξ)D̂( 1√
2mh̄ω

iν) and D̂( 1√
2mh̄ω

iν)D̂(
√

mω
2h̄

ξ).

1.4.11 Coherent states

Check, by use of operator identities, the expression for a coherent state |z〉 in the
n-representation, as given by Eq.(1.151). (Fill in missing details.)
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