
Chapter 2

Quantum mechanics and probability

2.1 Classical and quantum probabilities

In this section we extend the quantum description to states that include “classical”
uncertainties, which add to the probabilities inherent in the quantum formalism.
Such additional uncertainties may be due to lack of a full knowledge of the state
vector of a system or due to the description of the system as a member of a sta-
tistical ensemble. But it may also be due to entanglement, when the system is the
part of a larger quantum system.

2.1.1 Pure and mixed states, the density operator

The state of a quantum system, described as a wave function or an abstract vec-
tor in the state space, has a probability interpretation. Thus, the wave function is
referred to as a probability amplitude and it predicts the result of a measurement
performed on the system only in a statistical sense. The state vector therefore
characterizes the state of the quantum system in a way that seems closer to the
statistical description of a classical system than to a detailed, non-statistical de-
scription. However, in the standard interpretation, this uncertainty about the result
of a measurement performed on the system is not ascribed to lack of information
about the system. We refer to the quantum state described by a (single) state vec-
tor, as a pure state and consider this to contain maximum available information
about the system. Thus, if we intend to acquire further information about the state
of the system by performing measurements on the system, this will in general lead
to a change of the state vector which we interprete as a real modification of the
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physical state due to the action of the measuring device. It cannot be interpreted
simply as a (passive) collection of additional information.1

In reality we will often have less information about a quantum system than the
maximally possible information contained in the state vector. Let us for example
consider the spin state of the silver atoms emerging from the oven of the Stern-
Gerlach experiment. In principle each atom could be in a pure spin state |n〉 with
a quantized spin component in the n-direction. However, the collection of atoms
in the beam clearly have spins that are isotropically oriented in space and they
cannot be described by a singel spin vector. Instead they can be associated with
a statistical ensemble of vectors. Since the spins are isotropically distributed, this
indicates that the ensemble of spin vectors |n〉 should have a uniform distribution
over all directions n. However, since these vectors are not linearly independent,
an isotropic ensemble is equivalent to an ensemble with only two states, spin up
and spin down in any direction n, with equal probability for the two states.

We therefore proceed to consider situations where a system is described not
by a single state vector, but by an ensemble of state vectors, {|ψ〉1, |ψ〉2, ..., |ψ〉n}
with a probability distribution {p1, p2, ..., pn} defined over the ensemble. We may
consider this ensemble to contain both quantum probabilities carried by the state
vectors {|ψ〉k} and classical probabilities carried by the distribution {pk}. A sys-
tem described by such an ensemble of states is said to be in a mixed state. There
seems to be a clear division between the two types of probabilities, but as we shall
see this is not fully correct. There are interesting examples of mixed states with
no clear division between the quantum and classical probabilities.

The expectation value of a quantum observable in a state described by an en-
semble of state vectors is

〈A〉 =
n∑

k=1

pk 〈A〉k =
n∑

k=1

pk〈ψk|Â|ψk〉 (2.1)

This expression motivates the introduction of the density operator associated with

1An interesting question concerns the interpretation of a quantum state vector |ψ〉 as being the
objective state associated with a single system. An alternative understanding, as stressed by Ein-
stein, claims that the probability interpretation implies that the state vector can only be understood
as an ensemble variable, it describes the state of an ensemble of identically prepared systems.
From Einstein’s point of view this means that additional information, beyond that included in the
wave function, should in principle be possible to acquire when we consider single systems rather
than ensembles.
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the mixed state,

ρ̂ =
n∑

k=n

pk |ψk〉〈ψk| (2.2)

The corresponding matrix, defined by reference to an (orthogonal) basis, is called
the density matrix,

ρij =
n∑

k=n

pk 〈φi|ψk〉〈ψk|φj〉 (2.3)

The important point to note is that all information about the mixed state is con-
tained in the density operator of the state, in the sense that the expectation value
of any observable can be expressed in terms of ρ̂,

〈A〉 =
n∑

k=1

pk

∑

ij

〈ψk|φi〉〈φi|Â|φj〉〈φj|ψk〉

=
∑

i

n∑

k=1

pk〈φj|ψk〉〈ψk|Â|φj〉

= Tr(ρ̂Â) (2.4)

The density operator satisfies certain properties, in particular,

a) Hermiticity : ρ̂† = ρ̂ ⇒ pk = p∗k (real eigenvalues)

b) Positivity : 〈χ|ρ̂|χ〉 ≥ 0 for all |χ〉 ⇒ pk ≥ 0 (non − negative eigenvalues)

c) Normalization : Tr ρ̂ = 1 ⇒
∑

k

pk = 1 (sum of eigenvalues is 1) (2.5)

These conditions follows from (2.2) with the coefficients pk interpreted as proba-
bilities. We also note that

Tr ρ̂2 =
∑

k

p2
k ⇒ 0 < Tr ρ̂2 ≤ 1 (2.6)

This inequality follows from the fact that for all eigenvalues pk ≤ 1, which means
that Tr ρ̂2 ≤ Tr ρ̂.

The pure states are the special case where one of the probabilities pk is equal
to 1 and the others are 0. In this case the density operator is the projection operator
on a single state,

ρ̂ = |ψ〉〈ψ| ⇒ ρ̂2 = ρ̂ (2.7)
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In this case Tr(ρ̂2) = 1, while for all the (truly) mixed states Tr(ρ̂2) < 1.
A general density matrix can be written in the form

ρ̂ =
∑

k

pk|ψk〉〈ψk| (2.8)

where the states |ψk〉 may be identified as members of a statistical ensemble of
state vectors associated with the mixed state. Note, however, that this expansion is
not unique. There are many different ensembles that give rise to the same density
matrix. This means that even if all information about the mixed state is contained
in the density operator in order to specify the expectation value of any observ-
able, there may in principle be additional information available that specifies the
physical ensemble to which the system belongs.

An especially useful expansion of a density operator is the expension in terms
of its eigenstates. In this case the states |ψk〉 are orthonomal and the eigenvalues
are the probabilities pk associated with the eigenstates. This expansion is unique
unless there are eigenvalues with degeneracies.

As opposed to the pure states the mixed states are not providing the maximal
possible information about the system. This is due to the classical probabilities
contained in the mixed state, which to some degree makes it similar to a statistical
state in a classical system. Thus, additional information may in principle be avail-
able without interacting with the system. For example, two different observers
may have different degrees of information about the system and therefore asso-
ciate different density matrices to the system. By exchanging information they
may increase their knowledge about the system without interacting with it. If, on
the other hand, two observers have maximal information about the system, which
means that they both describe it by a pure state, they have to associate the same
state vector with the system in order to have a consistent description.

A mixed state described by the density operator (2.8) is sometimes referred
to as an incoherent mixture of the states |ψk〉. A coherent mixture is instead a
superposition of the states,

|ψ〉 =
∑

k

ck|ψk〉 (2.9)

which then represents a pure state. The corresponding density matrix can be writ-
ten as

ρ̂ =
∑

k

|ck|2|ψk〉〈ψk| +
∑

k �=l

c∗kcl|ψk〉〈ψl| (2.10)
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Comparing this with (2.8) we note that the first sum in (2.10) can be identified
with the incoherent mixture of the states (with pk = |ck|2). The second sum
involves the interference terms of the superposition and these are essential for the
coherence effect. Consequently, if the off-diagonal matrix elements of the density
matrix (2.10) are erased, the pure state is reduced to a mixed state with the same
probability pk for the states |ψk〉.

The time evolution of the density operator for an isolated (closed) system is
determined by the Schrödinger equation. As follows from the expression (2.8) the
density operator satisfies the dynamical equation

ih̄
∂

∂t
ρ̂ =

[
Ĥ, ρ̂

]
(2.11)

This looks similar to the Heisenberg equation of motion for an observable, but one
should note that Eq.(2.11) is valid in the Schrödinger picture. In the Heisenberg
picture, the density operator, like the state vector is time independent.

One should note the close similarity between Eq.(2.11) and Liouville’s equa-
tion for the classical probability density ρ(q, p) in phase space

∂

∂t
ρ̂ = {ρ, H}PB (2.12)

where {, }PB is the Poisson bracket.

2.1.2 Entropy

In the same way as one associates entropy with statistical states in a classical sys-
tem, one associates entropy with mixed state as a measure of the lack of (optimal)
information associated with the state. The von Neuman entropy is defined as

S = −Tr(ρ̂ log ρ̂) (2.13)

Rewritten in terms of its eigenvalues of ρ̂ it has the form

S = −
∑

k

pk log pk (2.14)

which shows that it is closely related to the entropy defined in statistical mechanics
and in information theory.

The pure states are states with zero entropy. For mixed states the entropy
measures ”how far away” the state is from being pure. The entropy increases
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when the probabilities get distributed over many states. In particular we note
that for a finitedimensional Hilbert space, a maximal entropy state exist where all
states are equally probable. The corresponding density operator is

ρ̂max =
1

n

∑

k

|k〉〈k| (2.15)

where n is the dimension of the Hilbert space and {|k〉} is an orthonormal set of
basis vectors. Thus, the density operator is proportional to a projection operator
that projects on the full Hilbert space. The corresponding maximal value of the
entropy is

Smax = log n (2.16)

A thermal state is a special case of a mixed state, with a (statistical) Boltzman
distribution over the energy levels. It is described by a temperature dependent
density operator of the form

ρ̂ = Ne−βĤ (2.17)

where β = 1/(kBT ) and N is a normalization factor. It is given by

N−1 = Tre−βĤ =
∑

k

e−βEk (2.18)

in order to give ρ̂ the correct normalization (2.5) consistent with the probability in-
terpretation. In the above expression Ek are the energy eigenvalues of the system.
The close relation between the normalization factor and the partition function in
(classical) statistical mechanics is apparent.

The quantum statistical mechanics is based on the definition of density matri-
ces associated with statistical ensembles. Thus, the density matrix (2.17) is asso-
ciated with the canonical ensemble. Furthermore the thermodynamic entropy is,
in the quantum statistical mechanics, identical to the von Neuman entropy (2.13)
apart from a factor kB, the Boltzmann constant. We will in the following make
some futher study of the entropy, but focus mainly on its information content
rather than thermodynamic relevance. Whereas the thermodynamic entropy is
most relevant for systems with a large number of degrees of freedom, the von
Neuman entropy (2.13) is also highly relevant for small systems in the context of
quantum information.
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2.1.3 Mixed states for a two-level system

For the two-level system we can give an explicit (geometrical) representation of
the density matrices of mixed (and pure) states.

Since the matrices are hermitian, with trace 1, they may be written as

ρ =
1

2
(1 + r · σ) (2.19)

where r is a three-component vector. The condition for this to be a pure state is

ρ2 = ρ

⇒ 1

4
(1 + r2 + 2r · σ) =

1

2
(1 + r · σ)

⇒ r2 = 1 (2.20)

Thus, a pure state can be written as

ρ =
1

2
(1 + n · σ) (2.21)

with n as a unit vector. This represents a projection operator that projects on the
one-dimensional space spanned by the spin up eigenvector of n · σ. We note that
this is consistent we the discussion of section (??), where it was shown that any
state in the two-dimensional space would be the spin up eigenstate of the operator
n · σ for some unit vector n.

For a general, mixed state we can write the density matrix as

ρ =
1

2
(1 + rn · σ)

=
1

2
(1 + r)

1 + n · σ
2

+
1

2
(1 − r)

1 − n · σ
2

(2.22)

with r = rn. This means that the eigenvectors of ρ, also in this case are the
eigenvectors of n ·σ, but the eigenvalue p+ of the spin up state and the eigenvalue
p− of the spin down state are given by

p± =
1

2
(1 ± r) (2.23)

The interpretation of p± as probabilities means that they have to be positive (and
less than one). This is satisfied if r ≤ 1. This result shows that all the physical
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Figure 2.1: The entropy of mixed states for a two level system. The entropy S is
shown as a function of the radial variable r for the Bloch sphere representation of
the states.

states, both pure and mixed can be represented by points in a three dimensional
sphere of radius r = 1. Points on the surface (r = 1) correspond to the pure
state. As r decreases the states gets less pure and for r = 0 we find the state
of maximal entropi. The entropi, defined by (2.14), is a monotonic function of
r, with maximum (log 2) for r = 0 and minimum (0) for r = 1. The explicit
expression for the entropi is

S = −(
1

2
(1 + r) log

1

2
(1 + r) +

1

2
(1 − r) log

1

2
(1 − r)) (2.24)

The sphere of states for the two-level system is called the Bloch sphere. More
generally the set of density matrices of a quantum system can be shown to form a
convex set (see Problem (2.4.3)).

2.2 Entanglement

In this section we consider composite systems, which can be considered as con-
sisting of two or more subsystems. These subsystems will in general be correlated
due to interactions between the two parts. A quantum system may have correla-
tions that in some sense are stronger than what is possible in a classical system.
We refer to this effect as quantum entanglement. This is considered as one of the
clearest marks of the difference between classical and quantum physics.
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2.2.1 Composite systems

To this point we have mainly considered an isolated quantum system. Only the
variables of the system then enters in the quantum description, in the form of of
state vectors and observables, while the dynamical variables of other systems are
irrelevant. As long as the system stays isolated all interactions with other systems
are negligible and the time evolution is described by the Schrödinger equation.

With maximal information about the system we describe it by a pure state (a
state vector), with less than maximal information it is described by a mixed state
(a density matrix). If the system is in a pure state, it will continue to be in a pure
state as long as it stays isolated. For a mixed state, the degree of ”non-purity”
measured by the entropy will stay constant as long as it is isolated. This follows
from the fact that the time evolution is unitary and the eigenvalues of the density
operator therefore do not change with time.

Clearly an isolated system is an abstraction since interactions with other sys-
tems (generally referred to as the environment) can never be totally absent. How-
ever, in some cases this idealization works perfectly well to a high dergee of acu-
racy. If interactions with the environments cannot be neglected, also variables
associated with the environment have to be taken into account. If these act ran-
domly on the system they tend to introduce decoherence in the system. The state
develops in the direction of being less pure, i.e., the entropy increases. However,
a systematic manipulation with the system may change the state in the direction
of being more pure. Thus, a partial or full measurement performed on the system
will be of this kind.

Even if a system A cannot be considered as isolated, sometimes it will be a
part of a larger isolated system. We will consider this sitation and assume that
the total system can be descibed in terms of a set of variables for system A and
a set of variables for the rest of the system, which we denote B. We assume that
these two sets of variables can be regarded as independent (they are associated
with independent degrees of freedom for the two subsystems A and B), and that
the interactions between A and B do not destroy this relative independence. We
further assume that the totality of dynamical variables for A and B provides a
complete set of variables for the full system. We refer to this as a composite
system.

The interactions between the two parts of a composite system will introduce
correlations between the two parts. Thus, the evolution of the two subsystems will
be correlated and the expectation values of variables from system A and B will in
general also be correlated. Correlations is a typical feature of interacting systems
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both at the classical and quantum level. We shall focus here on correlations that
are special for a quantum mechanical system.

In mathematical terms we describe the Hilbert space H of a composite system
as a tensor product of two Hilbert spaces HA and HB associated with the two
subsytems,

H = HA ⊗HB (2.25)

A basis |i〉 of HA and a basis |α〉 of HB then defines a tensor product basis for H,

|iα〉 = |i〉 ⊗ |α〉 (2.26)

A general vector in H is of the form

|χ〉 =
∑

iα

ciα|i〉 ⊗ |α〉 (2.27)

and in general it is not a tensor product of a vector from HA with a vector from
HB.

The observables of system A and the observables of system B define commut-
ing observables of the full system. This follows directly from how they act on the
basis vectors (2.26). With Â as an observable for system A and B̂ as an observable
for system B, we have

Â|iα〉 =
∑

j

Aji|jα〉 , B̂|iα〉 =
∑

β

Bβα|iβ〉 (2.28)

Clearly

ÂB̂|iα〉 =
∑

jβ

AjiBβα|jβ〉 = B̂Â|iα〉 (2.29)

The expectation values of observables acting only on subsystem A are deter-
mined by the reduced density matrix of system A. This is obtained by taking the
partial trace with respect to the coordinates of system B,

ρ̂A = TrB(ρ̂) , ρA
ij =

∑

α

ρiα jα (2.30)

In the same way we define the reduced density matrix for system B

ρ̂B = TrA(ρ̂) , ρB
αβ =

∑

i

ρiα iβ (2.31)
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In general the reduced density matrices will correspond to mixed states for the
subsystems A and B, even if the full system is in a pure state.

For a composite system there exist certain relations between the entropy S(ρ)
of the full system and the entropies of the subsystems, S(ρA) and S(ρB). Thus,
for a bipartite system (a system consisting of two parts), like the one considered
above, the following inequalities are satisfied,

S(ρ) ≤ SA + SB , S(ρ) ≥ |SA − SB| (2.32)

We note in particular the first inequality. This may seem somewhat surprising,
since it indicates that there are states of a composite system that are more pure
than the states of its subsystems. A corresponding situation for a classical system
would be rather paradoxical since it would mean that the total system could be in
a state that was more ordered than the states of its subsystems. Another way to
interprete the inequality is that full information about the states of the subsystems
A and B will in general not be sufficient to give full information about the state of
the total system A+B. When there are correlations between the two subsystems,
these are not seen in the description of A and B separately.

2.2.2 Correlations and entanglement

A product state of the form

ρ̂ = ρ̂A ⊗ ρ̂B (2.33)

is a state with no correlations between the subsystems A and B. For any observ-
able Â acting on A and B̂ acting on B the expectation value of the product operator
ÂB̂, is then simply the product of the expectation values

〈AB〉 = 〈A〉A 〈B〉B (2.34)

Written in terms of the density operators,

Tr(ρ̂ÂB̂) = TrA(ρ̂AÂ)TrB(ρ̂BB̂) . (2.35)

Conversely, if the product relation (2.34) is correct for all observables Â acting on
A and all observables B̂ acting on B, the two subsystems are uncorrelated and the
density operator can be written in the product form (2.34).

We next consider a (mixed) state of the form

ρ̂ =
∑

k

pk ρ̂A
k ⊗ ρ̂B

k . (2.36)
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With {pk} as a probability distribution, this density matrix can be viewed as de-
scribing a statistical ensemble of product states, i.e., of states which, when re-
garded separately, do not contain correlations between the two subsytems. How-
ever, the density matrix of the ensemble does contain (statistical) correlations be-
tween the two subsystems. Thus, the expectation value of a product of observables
for A and B is

〈AB〉 =
∑

k

pk 〈A〉k A 〈B〉k B

=
∑

k

pkTrA(ρ̂A
k Â)TrB(ρ̂B

k B̂) (2.37)

and this is generally different from the product of expectation values,

〈A〉A 〈B〉B =
∑

k

pk 〈A〉k A

∑

l

pl 〈B〉l B

=
∑

k l

pk pl TrA(ρ̂A
k Â)TrB(ρ̂B

l B̂) . (2.38)

The correlations contained in a density operator of the form (2.36) we may
refer to as classical correlations, since these are of the same form that we find in
a classical, statistical description of a composite system. However, in a quantum
system there may be correlations that cannot be written in the form (2.36) and
which are therefore of genuinely quantum mechanical nature. Composite sys-
tems with this kind of correlations are said to be entangled, and in some sense the
correlations that are found in entangled states are stronger than can be achieved
due to classical statistical correlations. In recent years there has been much effort
devoted to give a concise quantiative meaning to entanglement in composite sys-
tems. However, for bipartite systems in mixed states and for multipartite systems
in general, it is not obvious how to quantify deviations from classical correla-
tions. But for a bipartite system in a pure state the definition of entanglement is
unambiguous. We focus on this case.

We therfore now consider a general pure state of the total system A+B. The
entropy of such a state clearly vanishes. The state has the general form

|χ〉 =
∑

iα

ciα|i〉A ⊗ |α〉B (2.39)

but can also be written in the diagonal form

|χ〉 =
∑

n

dn|n〉A ⊗ |n〉B (2.40)
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where {|n〉A} is a set of orthonormal states for the A system and {|n〉B} is a set
of orthonormal states for the B system. This form of the state vector as a simple
sum over product vectors rather than a double sum is referred to as the Schmidt
decomposition of |χ〉. It can be shown to be generally valid for a composite two-
partite system.

The form of the state vector |χ〉 is similar to that of density operator (2.36)
for the correlated state. In the same way as for the density operator the system is
uncorrelated if the sum includes only one term, i.e., if the state has a product form.
However, the correlations implied by the general form of the state vector (2.40) are
different from those of the (classically) correlated state (2.36). From the Schmidt
decomposition follows that the density matrix of the full system corresponding to
the pure state |χ〉 is

ρ̂ =
∑

nm

dnd∗
m |n〉A〈m|A ⊗ |n〉B〈m|B (2.41)

This is not of the form (2.36). The state (2.40) has correlations between state
vectors of the two subsystems rather than correlations only between density oper-
ators.

From (2.41) also follows that the reduced density operators of the two subsys-
tems have the form

ρ̂A =
∑

n

|dn|2|n〉A〈n|A , ρ̂B =
∑

n

|dn|2|n〉B〈n|B (2.42)

The expressions show that all the eigenvalues of the two reduced density matrices
are the same. This implies that the von Neuman entropy of the two subsystems is
the same,

SA = SB = −
∑

n

|dn|2 log |dn|2 (2.43)

In this case, with the full system A+B in a pure state, the entropy of one of the
subsystems (A or B) is taken as a quantitative measure of the entanglement be-
tween the subsystems.

The Schmidt decomposition
We show here that a general state of the composite system can be written in the
form (2.40). The starting point is the general expression (2.39). We introduce a
unitary transformation U for the basis of system A,

|i〉A =
∑

m

Umi |m〉A (2.44)
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and rewrite the state vector as

|χ〉 =
∑

iα

∑

m

ciαUmi|m〉A ⊗ |α〉B

=
∑

m

|m〉A ⊗ (
∑

iα

ciαUmi|α〉B)

≡
∑

m

|m〉A ⊗ |m̃〉B (2.45)

If the unitary transformation can be chosen to make the set of states {|m̃〉} and
orthogonal set of states, then (2.40) follows. The scalar product between two of
the states is

〈ñ|m̃〉B =
∑

iα

∑

jβ

c∗jβU∗
njciαUmi〈β|α〉B

=
∑

ij

∑

α

c∗jαU∗
njciαUmi

= (UCC†U †)mn (2.46)

In the last expression the coefficients ciα have been treated as the matrix elements
of the matrix C. We note that the matrix M = CC† is a hermitian, positive
definite operator and the unitary matrix U can therefore be chosen to diagonalize
M . With the (non-negative) eigenvalues written as |dn|2 we have

〈ñ|m̃〉B = |dn|2δmn (2.47)

and if the normalized vectors |m〉 are introduced by

|m̃〉 = dm|m〉 (2.48)

then the Schmidt form (2.40) of the vector |χ〉 is reproduced with the basis sets of
both systems A and B as orthonormal vectors.

2.2.3 Entanglement in a two-spin system

To exemplify this we consider the simplest possible composite system, a system
that consists of two two-level subsystems (for example two spin-half systems).
We shall consider several sets of vectors with different degrees of entanglement.
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An orthogonal basis of product states is given by the four vectors

| ↑ ↑〉 = | ↑〉A ⊗ | ↑〉B
| ↑ ↓〉 = | ↑〉A ⊗ | ↓〉B
| ↓ ↑〉 = | ↓〉A ⊗ | ↑〉B
| ↓ ↓〉 = | ↓〉A ⊗ | ↓〉B (2.49)

where {| ↑〉, | ↓〉} is an orthonormal basis set for the spin-half system.
Another basis is given by those with well-defined total spin. As is well-known

by the rules of addition of angular momentum, two spin half systems will have
states of total spin 0 or 1. The spin 0 state is the antisymmetric (spin singlet) state

|0〉 =
1√
2
(| ↑ ↓〉 − | ↓ ↑〉) (2.50)

while spin 1 is described by the symmetric (spin triplet) states

|1, ↑〉 = | ↑ ↑〉 , |1, 0〉 =
1√
2
(| ↑ ↓〉 + | ↓ ↑〉) , |1, ↓〉 = | ↓ ↓〉 (2.51)

Clearly the two states |1, ↑〉 = | ↑ ↑〉 and |1, ↓〉 = | ↓ ↓〉 are product states with
no correlation between the two spin systems. However, the two remaining states
|0〉 and |1, 0〉 are entangled. These states may be included as two of the states of a
third basis of orthonormal states, called the Bell states. They are defined by

|a,±〉 =
1√
2
(| ↑ ↓〉 ± | ↓ ↑〉)

|c,±〉 =
1√
2
(| ↑ ↑〉 ± | ↓ ↓〉) (2.52)

and are all states of maximal entanglement between the two subsystems. We note
that the two spins are strictly anticorrelated for the first two states (|a,±〉) and
strictly correlated for the two other states (|c,±〉).

Let us focus on the spin singlet state |a,−〉. It is a pure state (of system A+B)
with density matrix

ρ̂(a,−) = |a,−〉〈a,−|

=
1

2
(| ↑ ↓〉〈↑ ↓ | + | ↓ ↑〉〈↓ ↑ | − | ↑ ↓〉〈↓ ↑ | − | ↓ ↑〉〈↑ ↓ |)

(2.53)
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The corresponding reduced density matrices of both systems A and B are of the
same form

ρ̂A = ρ̂B =
1

2
(| ↑〉〈↑ | + | ↓〉〈↓ |) (2.54)

The symmetric state ρ̂(a, +) has the same reduced density matrices as ρ̂(a,−). In
fact this is true for all the four Bell states. Thus, the information contained in the
density matrices of the subsystems do not distinguish between these four states of
the total system.

The loss of information when we consider the reduced density matrices is
demonstrated explicitly in taking the partial trace of (2.53) with respect to sub-
system A or subsystem B. The two last terms in (2.53) simply do not contribute.
If we leave out the two last terms of (2.53) we have the following density matrix,
which also have the same reduced density matrices,

ρ̂(a) =
1

2
(| ↑ ↓〉〈↑ ↓ | + | ↓ ↑〉〈↓ ↑ |) (2.55)

This is still strictly anticorrelated in the spin of the two particles, but the correla-
tion is now classical in the sense that the full density matrix is written in the form
(2.36). Thus, the terms that are important for the quantum entanglement between
the two subsystems are the ones that are left out when we take the partial trace.
These terms are the off-diagonal interference terms of the full density matrix, and
this means that we can view the entanglement as a special type of interference
effect associated with the composite system.

When the reduced density operators are written as 2 × 2 matrices they have
the form

ρA = ρB =
1

2

(
1 0
0 1

)
(2.56)

Thus they are proportional to the 2 × 2 unit operator and therefore correspond to
states with maximal entropy SA = SB = log 2. With the entropy of the subsys-
tems taken as a measure of entanglement this means that the spin singlet state is a
state of maximal entanglement. This is true for all the Bell states, as already has
been mentioned.

Finally, note that the reduced density matrices (3.8) are rotationally invariant.
This is however not the case for the “classical” density matrix (2.55) of the full
system. It describes a state where the spins of the two particles along one particu-
lar direction is strictly anticorrelated. It is interesting to note that we cannot define
a density matrix of this form which predicts strict anticorrelation for the spin in
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any direction. Also note that neither the pure state |a, +〉 is rotationally invariant.
In fact the state |a,−〉 is the only Bell state that is rotationally inavriant, since it
corresponds to spin 0. This makes the spin singlet state particularly interesting,
since it describes a situation where the spins are strictly anticorrelated along any
direction in space.

2.3 Quantum states and physical reality

In 1935 Einstein, Podolsky and Rosen published a paper where they focussed on a
central question in quantum mechanics. This question has to do with the relation
between the the formalism of quantum mechanics, with its probability interpreta-
tion, and the underlying physical reality that quantum mechanics describes. They
pointed out, by way of a simple thought experiment, that one of the implications
of quantum physics is that it blurs the distinction between the objective reality of
nature and the subjective description used by the physicist. Their thought exper-
iment has been referred to as the EPR paradox, and it has challenged physicists
in their understanding of the relation between physics and the reality of natural
phenomena up to this day. Einstein strongly suggested that the paradox showed
that quantum mechanics is an incomplete theory of nature. Later, in 1964 John
Bell showed that the conflict between quantum mechanics and intuitive notions of
reality goes deeper. Quantum theory allows types of correlations that cannot be
found in classical theories that obey the basic assumptions of locality and reality.

In this section we examine the EPR paradox in a form introduced by David
Bohm and proceed to examine how the limitations of classical theory is broken in
the form of Bell inequalities. As first emphasized by Erwin Schrödinger the basic
element of quantum physics involved in these considerations is that of entangle-
ment.

2.3.1 EPR-paradox

We consider a thought experiment, where two spin half particles (particle A and
particle B) are produced in a singlet state (with total spin zero). The two particles
move apart, but since they are considered to be well separated from any distur-
bance, they keep their correlation so that the spin state is left unchanged. The
full wave function of the two-particle system can be viewed as the product of a
spin state and a position state, but for our purpose only the spin state is of inter-
est. Concerning the position state it is sufficient to know that after some time the
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particles are separated by a large distance.
At a point in time when the two particles are well separated, a spin measure-

ment is performed on particle A. This will modify the spin state of this particle,
but since particle B is far away, the measurement cannot affect particle B in any
real sense. However, and this is the paradox, the change in the spin state caused by
the measurement will also influence the possible outcomes of spin measurements
performed on particle B.

The experiment is outlined in Fig.(2.3.1). From the time when the particles are
emitted and until the time when the spin experiment is performed the two particles
are in the entangled state

|a,−〉 =
1√
2
(| ↑ ↓〉 − | ↓ ↑〉) (2.57)

In this state the spin of the two particles are strictly anticorrelated. This means
that if particle A is measured to be in a spin up state, particle B is necessarily
in a spin down state. But each particle, when viewed separately, is with equal
probability found with spin up and spin down.

The reference to spin up (↑) and spin down (↓) in the state vector (2.57) seems
to indicate that we have given preference to some particular direction in space.
However, the singlet state is rotationally invariant. Therefor the state is left un-
changed if we redefine this direction in space. Thus, we do not have to specify
whether the z-axis, the x-axis or any other direction has been chosen, they all give
rise to the same (spin 0) state.

We now consider, in this hypothetical experiment, that the spin of particle is
measured along the z-axis. If the result is spin up, we know with certainty that
the spin of particle B in the z-direction is spin down. Likewise, if the result of
measurement on A is spin down the spin of particle B in the z-direction is spin
up. In both cases, a measurement of the z spin component of particle A will with
necessity project particle B into a state with well defined (quantized) z-component
of the spin. Since no real change can have been introduced in the state of particle
B (it is far away) it seems natural to conclude that the spin component along the z-
axis must have had a sharp (although unknown value) also before the measurement
was actually performed on particle A.

This conclusion is on the other hand in conflict with the standard interpre-
tation of quantum mechanics. If the the z-component of the spin of particle A
has a sharp value before the measurement, it will have a sharp value even if the
measurement along the z-axis is not performed at all, and even if we choose to
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Figure 2.2: The set-up of an EPR experiment. Two entangled particles in a singlet
spin state is sendt in opposite directions from a source S. The particles are shown
at three different times. The spin direction of each particle is, in this initial state,
totally undetermined. In Fig (a) the z-component of the spin of particle A is
measured by a measuring device MA at a time tMA

. Since the spins of the two
particles are strictly anticorrelated this measurement will project not only particle
A, but also particle B into a state of quantized spin in the z-direction. If one
assumes (like EPR) that no real change has taken place at the position of particle
B, one may be tempted to conclude that particle B was in reality in this spin
state also before the measurent. In Fig (b) the measurement by MA is changed
to a rotated direction. Repeating the argument would lead to the conclusion that
particle B had a well-defined (although unknown) spin component in this direction
before the measurement. But before the measurement one has a freedom of choice
in what direction to perform the measurement, either in the direction of (a) or the
direction of (b). This seems to indicate that both spin components have to be
well defined before the measurement. But the two components of the spin are
incompatible observables, hence the paradox.
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measure the spin along the x-axis instead. But now the argument can be repeated
for the x-component of the spin. This will in the same way lead to the conclu-
sion that the x-component of the spin of particle has a sharp value before the
measurement. Consequently, both the z-component and the x-component of the
spin must have a sharp value before the measurement is performed on particle A.
But this is not in accordance with the standard interpretation of quantum mechan-
ics. The z-component and the x-component of the spin operator are incompatible
observables, since they do not commute as operators. Therefore they cannot si-
multanuously be assigned sharp values.

The conclusion Einstein, Podolsky and Rosen drew from the thought experi-
ment is that both observables will in reality have sharp values, but since quantum
mechanics is not able to predict these values with certainty (only with probabili-
ties) quantum theory cannot be a complete theory of nature. From their point of
view there seem to be some missing variables in the theory. If such variables are
introduced, we refer to the theory as a “hidden variable” theory.

Note the two elements that enter into the above argument:
Locality — Since particle B is far away from where the measurement takes place
we conclude that no real change can take place concerning the state of particle B.
Reality — When the measurement on particle A makes it possible to predict with
certainty the outcome of a measurement performed on particle B, we draw the
conclusion that this represents a property of B which is there even without actually
performing a measurement on B.

From later studies we know that the idea of Einstein, Podolsky and Rosen that
quantum theory is an incomplete theory does not really resolve the EPR paradox.
Hidden variable theories can in principle be introduced, but to be consistent with
the predictions of quantum mechanics, they cannot satisfy the conditions of lo-
cality and reality used by EPR. Thus, there is a real conflict between quantum
mechanics and basic principles of classical theories of nature.

From the discussion above it is clear that entanglement between the two par-
ticles is the source of the (apparent) problem. It seams natural to draw the con-
clusion that if a measurement is performed on one of the partners of an entangled
system there will be (immediately) a change in the state also of the other partner.
But if we phrase the effect in this way, one should be aware of the fact that the
effect of entanglement is always hidden in correlations between measurements
performed on the two parts. The measurement performed on particle A does not
lead to any local change at particle B that can be seen without consulting the re-
sult of the measurement performed on A. Thus, no change that can be interpreted
as a signal sent from A to B has taken place. This means that the immediate
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change that is affecting the total system A+B due to the measurement on A does
not introduce results that are in conflict with causality.

2.3.2 Bell’s inequality

Correlation functions
The EPR paradox shows that quantum mechanics is radically different from clas-
sical statistical theories when entanglement between systems is involved. In the
original presentation of Einstein, Podolsky and Rosen it was left open as a possi-
bility that a more complete description of nature could replace quantum mechan-
ics. However, by studying correlations between spin systems John Bell concluded
in 1964 that the predictions of quantum mechanics is in direct conflict with what
can be deduced from a “more complete” theory with hidden variables, when this
satisfy what is known as Einstein locality. This was expressed in terms of a cer-
tain inequality (Bell inequality) that has to be satisfied by classical (local, realistic)
theories. Quantum theory does not satisfy this inequality.

To examine this difference between classical and quantum correlations we
reconsider the EPR experiment, but focus on correlations between measurements
of spin components performed on both particles A and B. Let us assume that the
particles move in the x-direction. The spin component in a rotated direction in the
y, z-plane will have the form

Ŝθ = cos θŜz + sin θŜx (2.58)

We consider now the following correlation function between spin measurements
on the two particles,

E(θA, θB) ≡ 4

h̄2 〈SθA
SθB

〉 (2.59)

Thus, we are interested in correlations between spin directions that are rotated
by arbitrary angles θA and θB in the y, z-plane. The factor h̄2/4 is included to
make E(θA, θB) a dimensionless function, normalized to take values in the inter-
val (−1, +1).

For the spin singlet state it is easy to calculate this correlation function. It is

E(θA, θB) = − cos(θA − θB) (2.60)

With the two spin measurements oriented in the same direction, θA = θB ≡ θ, we
have

E(θ, θ) = −1 (2.61)
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which shows the anticorrelation between the two spin vectors.
Let us now leave the predictions of quantum mechanics and look at the lim-

itations of a local, realistic hidden variable theory. We write the measured spin
values as SA = h̄

2
σA and SB = h̄

2
σB so that σA and σB are normalized to unity in

absolete value. We make the following assumptions

1. Hidden variables. The measured spin values SA of particle A and SB

of particle B are determined (before the measurement) by one or more unknown
varlables, denoted λ. Thus σA = σA(λ) and σB = σB(λ).

2. Einstein locality. The spin value SA will depend on the orientation θA, but
not on the orientation θB, when the two measuring devices are separated by a large
distance. Similarly SB will be independent of θA. We write this as

σA = σA(θA, λ) σB = σB(θB, λ)

3. Spin quantization. We assume the possible outcome of measurements are
consistent with spin quantization,

σA = ±1 σB = ±1

4. Anticorrelation. We assume that the measured values are consistent with
the known anticorrelation of the singlet state

σA(θ, λ) = −σB(θ, λ) ≡ σ(θ, λ)

Since the variable λ is unknown we assume that particles are emitted from the
source S with some probability distribution ρ(λ) over λ. Thus, the expectation
value (2.59) can be written as

E(θA, θB) =
∫

dλ ρ(λ) σA(θA, λ) σB(θB, λ)

= −
∫

dλ ρ(λ) σ(θA, λ) σ(θB, λ) (2.62)

We now consider the difference between correlation function E for two differ-
ent set of angles

E(θ1, θ2) − E(θ1, θ3) = −
∫

dλ ρ(λ)(σ(θ1, λ)σ(θ2, λ) − σ(θ1, λ)σ(θ3, λ))

=
∫

dλ ρ(λ)σ(θ1, λ)σ(θ2, λ) (σ(θ2, λ)σ(θ3, λ) − 1)

(2.63)
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In the last expression we have used σ(θ, λ)2 = 1, which follows from assumption
3. From this we deduce the following inequality

|E(θ1, θ2) − E(θ1, θ3)| ≤
∫

dλ ρ(λ) (1 − σ(θ2, λ)σ(θ3, λ))

= 1 + E(θ2, θ3) (2.64)

which is one of the forms of the Bell inequality.
Let us make the further assumption that the correlation function is only depen-

dent on the relative angle (rotational invariance),

E(θ1, θ2) = E(θ1 − θ2) (2.65)

Let us also assume that E(θ) increases monotonically with θ in the interval (0, π).
(Both these assumptions are true for the quantum mechanical correlation function
(2.60).) We introduce the probability function

P (θ) =
1

2
(E(θ) + 1) (2.66)

This function gives the probability for measuring either spin up or spin down
on both spin measurements (see the discussion below). It satisfies the simplified
inequality

P (2θ) ≤ 2P (θ) , 0 ≤ θ ≤ π

2
(2.67)

Due to strict anticorrelation between the spin measurements for θ = 0, which
means strict correlation for θ = π, the function satisfies the boundary conditions

P (0) = 0 , P (π) = 1 (2.68)

The inequality (2.67) further implies that P (θ) is a concave function with these
boundary values. This is illustrated in Fig.(2.3.2), where P (θ) = θ/π is a limiting
function which satisfies (2.67) with equality rather than inequality.

We now turn to the predictions of quantum theory. As follows from (2.60) the
function P (θ) is given by

P (θ) = sin2 θ

2
(2.69)
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Figure 2.3: The probability P (θ) for measuring two spin ups or two spin downs
as a function of the relative angle θ between the spin directions. Curve A sat-
isfies the Bell inequality, Curve B is the limiting case where the Bell inequality
is replaced by equality and Curve C is the probability predicted by quantum me-
chanics. Curve C is not consistent with the Bell inequality, but is confirmed by
experiment.

This function does not satisfy the Bell inequality. This is clear from taking a
special value θ = π/3. We have

P (2π/3) = sin2 π

3
=

3

4

2P (π/3) = 2 sin2 π

6
=

1

2
(2.70)

Thus, P (2π/3) > 2P (π/3) in clear contradiction to Bell’s inequality. This break-
ing of the inequality is seen also in Fig.(2.3.2).

Measured frequencies
To get a better understanding of the physical content of the Bell inequality we
will discuss its meaning in the context of spin measurements performed on the
two particles, where a series of results spin up or spin down is registered for each
particle. We are particularly interested in correlations between the results of pairs
of entangled particles.

Let us therefore consider a spin measurement experiment where the orienta-
tions of the two measurement devices are set to fixed directions. We assume N
pairs of entangled particles are used for the experiment. The results are registered
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for each pair, and we denote by n+ the number of times where the two particles are
registered both with spin up or both with spin down. The number of times where
one of the particles are registered with spin up and the other with spin down we
denote by n−. Clearly n+ + n− = N .

The functions E(θ) and P (θ) are for large N approximated by the frequencies

E(θ)exp =
n+ − n−

N

P (θ)exp =
1

2
(E(θ)exp + 1) =

n+

N
(2.71)

Thus P (θ) represents the probability for having the same result (both spin up or
both spin down) for an entangled pair, as already mentioned.

Let us first focus at the list of results called Series I in Fig.(2.3.2). We consider
this list as the outcome of a series of measurements for a setup where the directions
of the two measuring devices are aligned (θA = θB = 0). Each pair of entangled
particles is separated in a particle A whose spin is measured in MA and a particle
B whose spin is measured in MB.

The list indicates, as we should expect, that the results of measurements at
MA, when considered separately, correspond to spin up and spin down with equal
probability. The same is the case for the meaurements at MB. The list also reveals
the strict anticorrelation between measurements on each entangled pair. We write
the result as

P (I)exp =
n+(I)

N
= 0 (2.72)

Instead of performing a new series of measurements we next make some the-
oretical considerations based on the assumption of locality. We ask the question:
What would have happened if in the experiment performed the spin detector MB

had been rotated to another direction θB = π/3. Locality is now interpreted as
meaning that if MB were rotated, that could in no way have influenced the results
at MA. The series of measurements SA would therefore have been unchanged.
The results SB would however have to change since the results for θ �= 0 are not
strictly anticorrelated. Thus, some of the results would be different compared to
those listed in Series I. Quantum mechanics in this case predicts P (π/3) = 1/4.
In the list of Series II we have indicated a possible outcome consistent with this,
where

P (II)exp =
n+(II)

N
=

3

12
(2.73)
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SA   +  -  +  +  -  +  -  -  +  +  -  +

SB   -  +  -  -  +  -  +  +  -  -  +  -

Series I:    ΘA=ΘB=0,    n+=0

Spin measurements

SA   +  -  +  +  -  +  -  -  +  +  -  +

SB   -  +  +  -  +  -  -  +  +  -  +  -

Series II:   ΘA=0, ΘB=π/3,   n+=3

SA   -  -  +  -  -  +  -  -  -  +  -  +

SB   -  +  -  -  +  -  +  +  -  -  +  -

Series III:  ΘA=-π/3, ΘB=0,  n+=3

SA   -  -  +  -  -  +  -  -  -  -  -  +

SB   -  +  +  -  +  -  -  +  +  -  +  -

Series IV:  ΘA=-π/3, ΘB=π/3,  n+=4

Figure 2.4: Four series with results of spin measurement on pairs of entangled
particles (SA and SB). Spin up is represented by + and spin down by - . Series
I is considered as the result of a real expeiment with alignment of the directions
of the measuring devices MA and MB. A strict anticorrelation between the result
is observed for each pair. Series II gives the hypothetical results that would have
been obtained in the same experiment if the direction of MB were tilted relative
to MA. About 1/4 of the spins SB would be flipped. These are indicated by red
circles. This would lead to four pairs with correlated spins, indicated by green
lines. Series III is a similar hypothetical situation with MA rotated. Finally Series
IV gives the results if both MA and MB were rotated. In one of the pairs both
spins are flipped relative to Series I. This reduces the number of correlated spins
relative to the sum of correlated pairs for Series II and Series III.
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Since we have a symmetric situation between MA and MB we clearly could
have used the same argument if MA were rotated instead of MB. This situation is
shown in Series III, where the series of measurements SB is left unchanged, but
some of the results of SA are changed. In this case we have chosen θA = −π/3.
We also in this list have

P (III)exp =
n+(III)

N
=

3

12
(2.74)

consistent with the predictions of quantum mechanics.
Finally, we combine these two results to a two-step argument for what would

have happened if both measurement devices had been rotated, to the directions
θA = −π/3 and θB = π/3. We can start with either Series II or Series III.
Rotation of the second measuring device would then lead to a change of about
1/4 of the results in the series that was not changed in the first step. The total
number of correlated pairs would now be

n(IV ) = n(II) + n(III) − ∆ (2.75)

In this expression n(II) is the number of flips in the result of SB and n(III)
the number of flips in the results of SA. Such flips would change the result from
anticorrelated to correlated. However that would be true only if only one of the
spin results of an entangled pair were flipped. If both spins were flipped we would
be back to the situation with anticorrelations. Thus the number of correlated pairs
would be equal to the sum of the number of flips in each series minus the number
where two flips is applied to the same pair. The last number is represented by ∆
in the formula (2.75). In the result of Series IV this is represented by the result

P (IV )exp =
n+(IV )

N
=

4

12

< P (II)exp + P (III)exp =
6

12
(2.76)

The subtraction of ∆ in (2.75) explains the Bell inequality, which here takes the
form

P (2π/3) ≤ 2P (π/3) (2.77)

The results extracted from the series of spin measurements listed in Fig.(2.3.2)
gives (2.76) in accordance with the Bell inequality (2.77).
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The arguments given above, which reproduce Bell’s inequality, may seem to
implement the assumption of locality in a very straight forward way: Changes
in the set up of the measurements at MA cannot influence the result of measure-
ments performed at MB when these devices are separated by a large distance. The
predictions of quantum mechanics, on the other hand, are not consistent with the
results of these hypothetical experiments, and real experiments have confirmed
quantum mechanics rather than the Bell inequality.

So is there anything about the arguments given for the hypothetical experi-
ments that indicates that they may be wrong? We note at least one disturbing
fact. Only one of the four series of results in Fig.(2.3.2) can be associated with a
real experiment. The others must be based on assumptions of what would have
happened if the same series of measururements would have been performed under
somewhat different conditions. This is essential for the result. If the four series of
measurements should instead correspond to four different (real) experiments the
situation would be different. We then would have no reason to believe that the
series of results SA would be preserved when going from I to II or SB when going
from I to II. Each series would in this case rather give a new (random) distribution
of results for particle A (or particle B).

In any case the conclusion seems inevitable, that quantum mechanics is in
conflict with Einstein locality, i.e., with the basic assumptions that lead to the Bell
inequality. Does this mean that some kind of influence is transmitted from A to B
when measuring on particle A, even when the two particles are very far apart?

2.4 Problems

(To be completed.)

2.4.1 Density matrix and spin orientation

a) Write up the general expression for the (2 × 2) density matrix ρ of a spin half
system. (It should satisfy the conditions (2.5)). Show that it can be interpreted
as representating a statistical ensemble of spin up states and spin down states in
some direction n. Find the probabilities p+ for spin up and p− for spin up as well
as the unit vector n expressed in terms of the matrix elements of ρ. Is the vector
n uniquely determined? Discuss the special case where the vector is completely
undetermined.
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b) Assume the spin-half system is in a pure state. Find the density matrix
(or state vector) expressed in terms of the expectation values 〈Sz〉 and 〈Sx〉. (Is
information about 〈Sy〉 also needed to specify the state?)

c) Assume the spin-half system is in a mixed state. Consider the same question
as under b).

2.4.2 Spin 1 system

Find the number of parameters that determine the general density matrix of a spin
1 system. How many parameters are needed if the system is in a pure state?
Assume the expectation values 〈Sx〉, 〈Sy〉 and 〈Sz〉 are known. What additional
information is needed in the two cases in order to specify the state?

2.4.3 Convexity

Density matrices do not satisfy the superposition principle like the state vectors.
They do however satisfy a convexity criteria in the following form. If ρ̂1 and ρ̂2 are
two density matrices, also the following linear combination is a density matrix,

ρ̂ = αρ̂1 + (1 − α)ρ̂2 (2.78)

with α as a real number in the interval 0 ≤ α ≤ 1. Show this. Can a pure state be
written as such a combination of two other density matrices?

2.4.4 Schmidt decomposition

A composite system consists of two two-level systems. The Hilbert space of the
composite system is spanned by the four vectors

|00〉 = |0〉 ⊗ |0〉 , |01〉 = |0〉 ⊗ |1〉 , |10〉 = |1〉 ⊗ |0〉 , |11〉 = |1〉 ⊗ |1〉 (2.79)

Find the Schmidt decomposition of the following three vectors

|a〉 =
1√
2
(|00〉 + |11〉

|b〉 =
1√
3
(|00〉 + |01〉 + |10〉)

|c〉 =
1

2
(|00〉 + |01〉 + |10〉 + |11〉)

(2.80)
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