Chapter 3

Quantum physics and information

In recent years there has been an increasing interest in questions concerning the
relation between quantum physics and information theory. The present under-
standing is that the characteristic features of quantum physics that distinguishesit
from classical physics, namely quantum interference in general and quantum en-
tanglement in particular, creates the physical foundation for an approach to com-
munication and to processing of information that is qualitatively different from
the traditional one. At present thereisonly apartial understanding of this new ap-
proach, but the belief of many physicistsisthat anew type of quantuminformation
theory should be developed as an alternative to classical information theory. This
belief is supported by the discovery of algorithms that could speed up the com-
putation of certain types of mathematical problems in a quantum computer and
by the develpment of methods for secure and efficient communication by use of
entangled qubits.

The development of this new approach to information and communication
poses important challenges to the manipulation of quantum systems. Thisis so
since quantum coherence is important for the methods to work, and in a system
with many degrees of freedom decoherence will under normal conditions rapidly
destroy the important quantum correlations. The very difficult challengeisto cre-
ate a quantum system where, on one side, the quantum states are effectively pro-
tected from outside disturbances and, on the other side, the variables can rapidly
be adressed and manipulated in acontrolled way in order for the system to perform
the task in question.

In this chapter we focus on some basic theoretical elements in this new ap-
proach to physics and information, while for the discussion of the present status
of implementations of the ideas on physical systems we refer to several recent
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books on the subject. We first focus on an example of how quantum physics ad-
mits the possibility of aquiring information in a radically new way through an
interaction-free measurement. We then proceed to study how qubits can replace
bits as the fundamental unit of information.

3.1 An interaction-free measurement

The usual picture of measurements performed on a quantum system is that they
involve a non-negligible, minimal disturbance quantified by Planck’s constant. If
photons are used to examine a physical object, the minimal disturbance corre-
sponds to letting a single photon interact with the system. The energy of the pho-
ton may be made small, but since this means making the corresponding frequency
small, one will thereby loose resolution. Thus if a certain resolution is required,
a minimal energy has to be carried by the photon and this gives rise to a finite
perturbation of the object. The picture of measurementsin classical theory is dif-
ferent. There the energy that is carried by light of a given frequency can be made
arbitrarily small by reducing the amplitude, and therefore there is no lower limit
to how much an (idealized) measurement will have to disturb the object studied.

However, this is not the complete picture. Quantum mechanics opens up the
possibility for other types of more "intelligent” interactions than the direct " me-
chanical” interaction between the object and the measuring apparatus. With the
use of quantum superposition (or interference) certain types of measurements can
be performed which involve no mechanical interaction with the object. A partic-
ular exampleis discussed here.

Let us assume that a measurement should be performed in order to examine
whether or not an object is present within a small transparent box. If the object
is not there the box is transparent to light, if it is there the box is not transparent
since the object will absorb or scatter the photon. Let us further assume that
measurements are performed with single photons.

A direct measurement would be to send a photon through the box and to regis-
ter whether the photon is transmitted through the box or whether it is not transmit-
ted. Thiswould clearly give the information required. If the object is present, the
information about this situation is achieved by a direct (mechanical) interaction
between the photon and the object. Apparently this is the least interaction with
the object that can be made in order detect its presence.

1This example is taken from A.C. Elitzur and L. Vaidman, Found. Phys 23 (1993) 987.
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Figure 3.1: The set up of a single-photon measurement to detect the presence of
an object in a transparent box by use of a Mach-Zender interferometer. A pho-
ton is sent through a beam splitter that directs it, in a superposition, either in the
horizontal or vertical direction. On the lower path the box is placed. Therefore, if
the object is present, the lower path is blocked, while if it is not there both paths
are open. The two paths meet again at a second beam splitter and then the photon
is directed towards one out of two possible detectors. The interferometer is ar-
ranged so that if both paths are open, destructive interference prevents the photon
from reaching detector B. Thus, if the photon is registered by B this provides the
information that the lower path is blocked and that the object is present in the box.
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However, thisis not the correct conclusion to draw, as is outlined in Fig.3.1.
The figure shows a Mach-Zender interferometer where an incoming photon can
follow two different paths and eventually be registered in of the two detectors. We
first consider the case where both paths are open. The photon will first meet a
beam splitter that with equal probability will direct the photon horizontally into
the lower path or vertically into the upper part. On both paths the photon will
meet a mirror that redirects it towards a second (50/50) beam splitter. Here the
two components of the phoston wave functionswill meet and form a superposition
that can either direct it in the horizontal direction towards adetector A or vertically
towards a detctor B.

If we neglect the coherence effect and assume an incoherent scattering of the
photon by the beam splitters, with equal probability in the two directions, then we
expect that the probability for detecting the photon by detector A to be 50%. With
the same probability the photon will be detected by B. However, the quantum
description of the transmission of the photon through the apparatus implies that
the photon at intermediate times is not located (with a certain probability) on one
of the paths, but is rather in a superposition of being on each of the two paths.
This meansthat the two signal s following the upper and lower paths will interfere
when they meet at the second beam splitter. In the following we will assume
the experimental setup to be adjusted to a situation where the interference acts
constructively for a photon directed towards detector A and destructively for a
photon directet towards detector B. Thus, the probability for detecting the photon
by A is 1 and the probability for detecting the photon by B is 0. Thiswill be the
case as long as both paths are open. Clearly, if one of the paths are closed the
photons that get through are instead detected with equal probability by A and B.

To describe the situation more formally let us denote the state of a photon
moving in the horizontal direction by |0) and a photon moving in the vertical
direction by |1). (With this notation we do not make any distinction between
wherein the apparatus the photon is.) The action of the beam splitters on a photon
is described by the mapping

1

0) = 5(0)+il1)
) - %mwz‘m» (3.1)

while the action of the mirrorsis given by

0) — |1), (lower mirror)
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1) — 4|0), (upper mirror) (3.2

The lengths of the paths are assumed to be the same so the phase differences that
are for photons on the two paths acquired are only due to phase changes at the
mirrors and beam splitters. The photon is subject to a serie of transformations of
the form (3.1) and (3.2) in the interferometer. Let us consider the mapping from
the incoming state to the outgoing state (before detection) when only the upper
path is open,

10) = i[1) = =10) = ——=(|0) +i[1)) — —%(|O> +11)) (33)

o
V2 V2
Since we are interested in the state of a photon that exits from the last beam split-
ter, the intermediate states have been normalized, thus neglecting the probability
that the photon is absorbed on the lower path. The interesting point to note that
the final state is a superposition with equal probability for exit in the horizontal
and vertical direction.

If both paths are open the mapping from the initial to the final state isinstead

Z5(00)+il1)) = (=10} + 1) = o) (3.4)
and we note that only one component survives. The photon will exit (with proba-
bility 1) in the horizontal direction.

We will now turn to the original problem and consider the the situation where
the box, which either is empty or not empty, is placed on one of the paths of the
photon. Theintention isto send one photon through the interferometer in order to
investigate whether the box is empty or not. We note that if the box is empty we
have the situation where both photon paths are open. If the box is not empty only
one of the paths will be open.

Let us consider the possible outcomes of the experiment where a photon is
sent through the interferometer:

0) —

1. The photon does not get through.
We conclude that the object is present, the photon has interacted with the
object.

2. The photon isregistered by detector A.
Theresult isinconclusive. Whether the object isthere or not thereis always
a chance for the photon to be detected by A. The experiment has to be
repeated.
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3. The photon isregistered by detector B.
We conclude that the object is present, since the probability of detecting the
photon by B with both paths open is 0.

Of the possible outcomes we focus on 3., which is the interesting one. In this
case the presence of the object has been detected without any interaction with it.
This is so since the detection of the photon implies that no interaction has taken
place. A natural explanation seems to be that the photon has followed the up-
per (open) path, but that the detection of the photon provides information about
the lower path (that it is closed). This result depends crucialy on the possibil-
ity of quantum superposition. In aclassical theory this would not happen. Note
however, the curious fact that when the object blocks the path, in reality no su-
perposition takes place. The result of the measurement will be the same asin a
classical theory with a certain probability for the photon to follow the upper path.
Itisour knowledge of the possible outcomes when both paths are open that alows
us to draw the conclusion that one path is closed.

In conclusion this thought experiment shows that adirect interaction in amea-
surement is not always needed. But there has to be a possibility for the interaction
to take place. A superposition between two states where one of them interacts
(when the object isthere) and the other does not is an important ingredience in the
Set up.

The exampl e discussed here shows that alternative ways to collect information
with guantum mechanical methods is a possibility. Quantum coherence or super-
position is important for such methods to work. Also the importance of using
"intelligent ways’ to address the measuring problem, instead of a (naive) direct
measurement is emphasized.

3.2 From bitsto qubits

In the classical information theory developed by Shannon information is quanti-
fied in terms of discrete units of information. Thus, the elementary information
unit isabit, and thisis viewed as a function which can take two possible values,
normally the numerical values 0 and 1. The information lies in specifying which
of the two values to asign to the bit. The idea is that a general message, to an
arbitrary good precision, can be expressed in terms of afinite sequence of bits.
The idea of quantizing information creates the basis for the general theory of
information. But as we all know it also creates the basis for a practical approach
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to information and communication in the form of digital signals. Whereas com-
munication (by telephone, radio or TV) used to be in the form of analog signals,
presently the use of digital signalsare preferred because thisadmitsamore precise
determination (and correction) of the information content of the signal.

Information theory can be viewed (and is normally so) as a mathematical dis-
cipline. However, from a physics point of view, it is natural to focus on the im-
plementation of the theoretical ideasin terms of physical signals. Thus the infor-
mation will normally be coded into signals that are created and manipulated in
physical (electronic) devices. They are transmitted by physical mediators (elec-
tromagnetic waves or electric signals) and are again manipulated and decoded in
(electronic) receivers.

A message consisting of a certain number of bits can be viewed as a state of a
physical system. With NV bitsthere are 2V states, which represent all the different
messages that can be encoded in the IV bits. In this picture the factorization of
the message into single bits corresponds to a separation of the physical system
into N two-state subsystems. Thus, the information unit bit corresponds to the
two-state system as a physical unit. Such a system can be realized in many ways,
as aphysical system that can easily be switched between two stable states, as an
electric signal with only two allowed values ("on” or ” off”) etc.

Theimportant point to note is that the two-state system considered in thisway
isaclassical system. And the interesting question which has been addressed in
recent years is whether quantum physics should introduce a new picture of the
(physical) unit of information. The classical two-state system has its counter-
part in the quantum two-state or two-level system, and for the quantum system
anew feature is that coherent superpositions between states are possible. In the
same way as the classical two-state system is associated with a bit of information,
the quantum two-level system is associated with a new information unit, a qubit.
While the possible values of a bit is restricted to 0 and 1, the qubit takes values
in a two-dimensional Hilbert space spanned by two vectors |0) and |1). Thus a
genera qubit stateis

|9) = al0) + 8[1) (3.5

with o and (5 as complex coefficients.

Let us therefore assume that a message in this new picture is encoded not
in a classical state of a system, but in a quantum state of a finite-dimensiona
Hilbert space. Such a Hilbert space is unitarily equivalent to a tensor product of
N two-level systems, provided we restrict the dimension of the Hilbert space to
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Figure 3.2: The physical states of a qubit can be viewed as points on a sphere.
The poles of the sphere correspond to the two classical one-bit states 0 and 1

M = 2V, In this sense we can view the qubit as the elementary building block
of information. Note however that the general state is not a product state of the
qubits, since aso superpositions should be included. This means that the general
state involves entanglement between the qubits.

Apparently there is much more than one bit of information contained in each
qubit, since the qubit states form a continuum that interpolate between the ” clas-
sical” states |0) and |1). However, one should be aware of the fact that even if
more information is contained in the specification of the qubit state, thisinforma-
tion cannot be read out by making a measurement on the qubit. Thisis due to the
probabilistic interpretation of the state. One may compare this to a situation with
a(classical) probability distribution over the two states 0 and 1. Since the proba-
bility distribution depends on a continuous parameter, much more than one bit of
information is needed to specify the value of this parameter. However, since each
classical two-state system can only be in the states 0 or 1, an ensemble of these
systems is needed to provide the information about the probability distribution.

In the case of qubits the situation is somewhat similar, but not completely so.
Unlike aclassical probability distribution the superposition of statesis aresource
that can be used for some types of information processing. This has been demon-
strated by specific examples.
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3.3 Communication with qubits

New possibilities open up in communication when we can exploit quantum in-
terference and quantum entanglement. We show here a ssmple example of dense
coding of information with the help of entangled qubits.

Let us assume that a sender A (often referred to as Alice) wants to send a
two-bit message to areceiver B (referred to as Bob). The question that is posed
is whether this can be done by transmitting a single qubit, since the claim is that
a qubit carries more information than a bit. The apparent answer is no: If Alice
prepares the the qubit in a pure state and send it to Bob, he can read out the
information by a measuring the state in a given basis (corresponding to measuring
the spin component in some direction). Theresult is0 or 1, where the probability
for getting these two results is determined by the decomposition of the prepared
state on the the two basis states |0) and |1). It seems that the best they can do
in order to send the meassage is to agree on what basis to use. Then Alice can
choose between two possible states |0) and |1) and Bob can determine which of
the states is chosen by making a measurement in the same basis as used by Alice.
But in thisway a qubit can communicate only one bit of information.

However, amore intelligent way to do it exists. Let us assume that Alice and
Bob in advance have shared a pair of qubits with maximum entanglement. They
may for example be in the state

1
V2
We assume the qubits are kept in a safe way so that the entanglemet is kept un-
changed until the qubits are used for communicating the message.

The four two-bit messages can be associated with a set of four states, denoted
00, 01, 10 and 11, by assigning one of the states to each of the messages. Alice
now encodes the chosen message to her (entangled) qubit by making a transfor-
mation on it. The transformation is determined by the message in the following
way,

lc, +) = —=(]00) + |11)) (3.6)

00 — 11|, +)= |c,+)
01 — i0.®1]c,+) =1ilc,—)
10 — 0, ®1|e,+) =1ila,+)
11 — i, ®1]c,+) = l|a,+) (3.7)

In the first case no change is made to her qubit, in the second case a rotation of
7 around the z-axis is performed, in the subsequent cases rotations around the y-
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axis and z-axis are performed. (We here envisage the qubit states as spin states.)
We note that in all cases no change is done to the B-qubit, and in all cases the
maximal entanglement is kept by transforming the original state into another Bell
State.

Alice now transmits her qubit to Bob who is free to make measurements on
both entangled qubits. We note that the four different (two-bit) messages are in-
coded in the four orthogonal Bell states. Bob can determine which one is chosen
by Alice by measuring the (eigen)value of an observable which has the Bell states
as eigenstates (assuming different eigenvalues for the four states). If Bob in ad-
vance has been informed about the key to decode the message from the Bell states,
then he will obtain the full two-bit message from the measurement.

In thisway Alice has managed to transfer the two-bit message to Bob by en-
coding the message into asingle qubit which is afterwards transmitted to Bob. The
second qubit, belonging to Bob is not affected by the manipulations performed by
Alice. Also note that the original entangled state contains no information about
the message. Nevertheless, the message is read out by making a measurement on
both qubits.

The entanglement is essential for being able to transmit the full message by a
single qubit. Infact, if we consider Alice’s qubit separately, itisal thetimein the
same state, described by the reduced density matrix

pa=5(10) (0] + 1) 39

This means that all the information is contained in the entanglement between
the two qubits, since no information lies in the reduced states of the two qubits.
From this we also note the important point: The message can only be read by the
receiver who has the second qubit of the entangled pair. In this way the message
Is protected from others than Bob. This principle of protecting information by
encoding the information into entangled pairs of qubits is the basis for quantum
cryptography, whichisafield of research that has been rapidly developed in recent
years.

3.4 Principlesfor a quantum computer

The probably most interesting suggestion for application of quantum physics to
information technology is in the form of quantum computers. The ideais that a
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computer build on quantum principles will manipulate information in a qualita-
tively different way than a classical computer and thereby solve certain types of
problems much more efficiently.

A type of problem that is most interesting for physicistsis simulation of quan-
tum systems. Today numerical solutions of physics problems are important for
research in almost any field of physics, but the capacity of present day computers
givesaclear limitation to the size of the problem that can be solved. Thus, aquan-
tum system with NV degrees of freedom has a Hilbert space with dimension m?”,
if each degree of freedom is described by an m-dimensional space. This means
that m” complex parameters are needed to specify a Hilbert space vector, and the
number of variables to handle therfore grows exponentially with N.

The idea is that a quantum computer works as a quantum mechanical sys-
tem, with the computation performed by unitary transformation on superposition
of qubit states. For the simulation of quantum systems there is an obvious gain,
since the number of qubits needed to represent the wave function grows linearly
with the number of degrees of freedom N rather than exponentially. In addition
to the simulation of quantum systems there are also certain other types of math-
ematical problems that can be solved more efficiently with the use of quantum
superposition. Two algorithms that have gained much interest are the Shor algo-
rithmfor factorizing large numbers and the Grover algorithm for making efficient
serch through data bases.

The typical feature of a quantum computer is to work with superpositions of
(qubit) states. From a computational point of view this can be seen as new type
of quantum parallel computing. In the picture of path integrals we may view a
classical computation as a (classical) path, where each logical operation corre-
sponds to making a (new) direction for the path. Parallel processing in this picture
corresponds to working simultaneously with several pathsin the ” space of logical
operations’. In the quantum computer many paths are, in a natural way, involved
at the same time in the form of a superposition of states, and the final result is
obtained by quantum mechanical interference between contributions from all the
(classical) paths. Clearly, if a problem should be solved much more efficiently on
aquantum computer than on aclassical computer, superposition of stateshasto be
used extensively in the computation. This means that the qubitswill be highly en-
tangled during the computation. The serious challenge for constructing a quantum
computer is therefore to be able to preserve and operate on such highly entangled
states.
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Figure 3.3: A schematic picture of a universal quantum computer. An input state
IS prepared as a quantum state of a set of qubits. A network of logical gates, that
perform one-qubit and two-qubit transformations, operates on the input qubits
(and a set of additional work qubits) to produce an output state. The result of
the computation is read out by measuring the state of each output qubit. In the
diagram the horisontal lines represent the qubits and the boxes represent the gates
or logical operations performed on the qubits.

3.4.1 A universal quantum computer

Theideaof auniversal quantum computer issimilar to that of auniversal classical
computer. Thus, auniversal quantum computer is designed to solve general types
of problems by reducing the computation to elementary qubit operations. This
means that the input wave function is encoded in a set of (input) qubits, and the
computational program acts on these by performing logical operationsin theform
of unitary transformations on the qubits. A standard set of unitary one-qubit and
two-qubit operations are used, where each operation is performed at alogical gate.
Together the logical gates form a computational network of gates.

In Fig. 3.4.1 a schematic picture of a universal quantum computer is shown.
Theinput datais encoded by preparation of an input quantum state. The computer
program acts on the input state and by aunitary transformation produces an output
state where the result of the computation is read out by a quantum measurement.
The computational task is specified partly by the transformation performed on the
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state and partly on how the measurement is performed.

This picture of a quantum computer is quite analogous to that of a classica
computer, where bits of information are processed at logical gates that together
form alogical network. The main difference is that in the quantum computer the
information is processed as quantum superposition between states. And the com-
putation is reversible since the unitary transformations are all invertible. Thisis
different from a (standard) classical computer where some of the standard logical
operations are irreversible in the sense that the mapping between the input state
and the output state is not one-to-one.

A universal set of logical gates

The idea of a universal quantum computer is based on possibility of factorizing
any unitary transformation that acts on the quantum states of an /V qubit systemin
terms of asmall number of standard one-qubit and two-qubit transformations. We
will here only outline how such afactorization is shown. It involves the following

steps,

1. A unitary transformation acting on afinitedimensional Hilbert space can be
factorized in terms of two-level unitary transformations. These transforma-
tions act on two-level subsystems spanned by orthonormalized vectors of a
common basisin the full Hilbert space,

U =T[U(in, jn) (3.9)
wherei,, and j,, denotes the basis states affected by the nth transformation

2. A two-level unitary transformation acting between basis states of the N-
qubit Hilbert space can be factorized in terms of a set of one-qubit and
two-qubit operations. If the number of terms in the factorization is finite,
ageneral unitary transformation can only be represented in an approximate
form. Thus, the continuous parameters of the unitary transformation is re-
placed by a set of finite values.

The following one-qubit and two-qubit transformation gives an example of a
universal set of qubit operations,

1. The Hadamard transformation.
Thisis asingle-qubit transformation defined by the operations on the qubit
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Figure 3.4: Symbolic representation of logical gates. In the representation of the
CNOT gate the upper line corresponds to the control qubit and the lower line to

the target qubit

statesin the following way,

10 = 50+ 1)
- 1
7 = 2500 -11)

In matrix form thisis,
1 -1 1
H = V2 ( 1 1)
2. The Phase transformation.

Thisis also asingle-qubit transformation, defined by

1oy = o)
Sl = 1)

i 0
s=(o 1)
3. The 7/8 transformation.
Thisisthe third single-qubit transformation. It is defined by
T10) = |0)
T1) = e™/1)

which in matrix form is

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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with the matrix form
im/4
T (6 0> (3.15)

4. The CNOT transformation.
This is a two-qubit transformation, which is a quantum version of a con-
trolled not operation. It is defined by

Cnor|0) ®10) = 10) ®0)
Cyor0)® (1) = [0)® 1)
Cror 1) ®10) = [1)® 1)
Cror )@ |1) = [1)®]0) (3.16)

We note that the state of thefirst qubit isleft unchanged. It acts as a control
qubit on the second qubit: If the first qubit is in the state |0) the second
qubit is left unchanged. If the first qubit isin the state |1) the second qubit
switchesstate |0) < |1). With the basis vectors of the product space written

in matrix form,
0 0
0 0
@)= || e -]
1 0
0 1
1 0
Hel)— ||, hem-—], (317)
0 0
the C NOT operation corresponds to the following 4 x 4 matrix,
01 00
1 0 0 0
Cnor = 00 1 0 (3.18)
0 0 0 1

The definitions above give the action of qubit operations on a set of basis vec-
tors for the single-qubit and-two qubit spaces. With specification of the qubits
involved, the action of these operators on a complete set of basis vectors for the
full N- qubit space is determined, and thereby the action of the operators on any
state vector, by the principle of linear superposition.
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3.4.2 A smplealgorithm for a quantum computation

As already mentioned, certain algorithms have been designed for solving math-
ematical problems more efficiently on a qguantum computer than can be done on
a classica computer. A famous example is Shor’s algorithm, that adresses the
question of how to factorize large numbers. Thisis ahard problem on a classical
computer, since the computational time used to factorize large nubers will in gen-
eral increase exponentialy with the number of digits. (This fact is the basis for
making use of factorization of large numbers as keys in crytographic schemes.)
The demonstration by P. Shor that the factorization can be done more efficiently
on a quantum computer is one of the reasons for the boost of interest for quantum
computing over the last decade.

In this section we will focus on asimpler algorithm introduced by D. Deutsch
some time ago. The intention is to use this algorith as a smple demonstration
of how superposition makes it possible to adress certain types of problems more
efficiently.

The problem adressed is to study one-bit functions. Such a function gives a
mapping

f(x): {0,1} — {0,1} (3.19)

We will need to add these functions, and note that addition between one-bit num-
bers can be defined from ordinary addition if the result is defined modulo 2. Thus,
the explicit addition ruleis

0+40=0, 0+1=140=1, 1+1=0 (3.20)
We also note that there exist four different one-bit functions (3.19),

fo:4{0,1} = {0,1}, f»:{0,1} — {1,0}
fe:{0,1} = {0,0}, fq:4{0,1} —{1,1} (3.20)

where the sets of input values and output values are here considered as ordered
sets. Let us assume that a function f(z) is known only operationally, i.e., by
assigning the input variable = the two possible values 0 and 1, the two output
values f(0) and f(1) are produced. (We may think of the function as a black box
that produce the output result from a given input.) Initialy the function is not
known and instead of determining the function in the way indicated we examine
the function by use of a simple quantum computation.
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Figure 3.5: Schematic representation of qubit transformations for Deutsch’s algo-
rithm. The first qubit is prepared in the |0) state and the second qubit in the |1)
state. They are both transformed by a Hadamard operation before atwo-qubit op-
eration is performed. This operation, Uy, is determined by the (unknown) one-bit
function f(x). Finaly a second Hadamard transformation is performed on the
first qubit before a measurement is performed.

We then assume that the function can be implemented on qubit states in the
following way

Ty lg) = al0) + 1) — alf(0)) + BI(f(1)) (3.22)

Thisis considered as a single (qubit) operation even if both results £(0) and f(1)
are present in the output state. We wish to define the operation as a unitary trans-
formation, but note that (3.22) will not be unitary for all the four functions (3.21).
The mapping between input and output states is therefore modified to operate as
atwo-qubit transformation in the following way,

Up:|2) @ |y) — |2) @y + f(2)) (3.23)

where |z) and |y) denote standard qubit basis states (|0) and |1)). We note that
the first qubit (|z)) is left unchanged by the transformation; it acts as a control
qubit on the second qubit. Thus, if f(x) = 0 the state of the second qubit is left
unchanged, if f(z) = 1 the state of the second qubit is flipped (0 < 1). Itis
straight forward to check that (3.23) defines a unitary transformation.

We now consider the computation is performed that is shown in diagrammatic
form in Fig. 3.4.2. It corresponds to the following sequence of unitary transfor-
mations
1 1

S0+ @ \f(|0> - D)

e - :

Sl
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- ﬁ((_l)ﬂ%) + (1)) @ %(lm = [1)
R % (=)@ + (=1)/D)|0)
+H(-)O — (-1 )] ® %um —[1))
= |q) ®@|g2) (3.24)

We note that the for the first qubit there are two possible final states depending on
whether f(0) and f(1) are equal or different. Thus,

FO 4+ (1) = 0 = |g)=(-1)"O)
FO)+£(1) = 1 = |q)=(-1)/@)0) (3.25)

Thisimplies that by making a measurement on this qubit which projects it either
to the state |0) or |1) we can decide the value of f(0) + f(1). Thisdoes not fully
determinethe function f(z), it only distinguishes between the invertible functions
fa, f» @nd the non-invertible functions f., f;. However, what is interesting is that
this information should normally only be available after two operations with the
function, while here only one operation with the function on a superposition of
states is needed.

This demonstrates the point that the use of quantum superpositions makes
it possible to perform in one operation what would normally correspond to two
classical computations. This is what we have referred to as quantum parallel
processing. There is a close relation between the evaluation discussed here of
quantum states that contain information about both functional values f(0) and
f(1) and the interacti on-free measurement discussed earlier, where the state vector
contains information about both the paths that the photon may follow.

The example given by Deutsch’s algorithm may be too simple to convincingly
justify the claim that the quantum computation is more efficient than the classi-
cal computation. Obviously the unitary transformation U, corresponding to the
function f(x) has to be supplemented by other qubit operations and this does not
make it completely clear that there is a net gain. The important point to make
is that only one evaluation which involves f(x) has been done rather than two.
For the other algorithms mentioned one can demonstrate more explicitly the gain
by showing that the number of qubit operations scales in a different way than the
number of operations in a classical computer. This makes it clear that quantum
parallelism may indeed speed up certain types of calculations.
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3.4.3 Can aquantum computer be constructed?

The considerations on how aquantum computer may more efficiently solve certain
types of problems makesit avery interesting idea. But isit feasable that thisidea
can be implimented in the form of a real physical computer? The difficulties to
overcome are extremely demanding. At present qubit operations with a small
number of qubits may be performed, but the idea that thousands and thousands of
gubits work coherently together at the quantum level is at this stage an attractive
dream. Some people working in the field are rather pessimistic that the necessary
control of the quantum states can in reality be made. In particular the problem of
decoherenceis extremely demanding, although algorithmsfor correcting quantum
states that are modified due to decoherence have been suggested.

But other workers in the field remain optimistic, and at the level of mak-
ing controlled quantum operations on a few qubits there has been an impressive
progress. There is in fact a competition between different types of realizations
of physical qubits. In the context of electronic systems interesting developments
are based on the use of electronic spin as the two-level variable. In the context of
guantum optics the use of trapped two-level atoms or ions has been extensively
studied. One particularly interesting application isin the form of optical lattices,
where a collection of laser beems are used to trap atoms in a periodic potential,
where the lasers are used to adress the atoms in the form of one-qubit operations
and where where they are used to let the atoms interact in the form of two-qubit
operations.

One should note that even if the construction of auniversal quantum computer
at this stage may be far away in time, there may be partial goals that can be more
readily achieved. |deas of quantum cryptography have already been implemented,
and in the field of computation a quantum simulator may be a much closer goal
than a universal computer. Recent developments suggests that the use of optical
lattices may give a redlistic approach towards this goal, and the ssimulation of
guantum spin lattices in this way may be a possibility in a not too distant future.

3.5 Problems

(To be completed.)
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