
UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in : INF 110 — Algorithms and Data Structures

Examination date : Wednesday, December 3, 2003

Examination hours : 09.00 a.m. - 3.00 p.m.

This examination set consists of 6 pages including the appendix.

Appendix : One sheet with multiple questions answer array and

 frequency table for Huffman coding

Permitted aids : All printed and hand written material

Ensure that your examination set is complete before you attempt to answer it. Detach
the appendix sheet, write your number on it, provide the required answers, then staple it
together with the rest of your exam answers.

Problem 1 (20 %)

The following set of 10 problems is multiple choice. Each problem has the same weight
in terms of percentages, but not necessarily the same difficulty. Please provide your
answers on the appendix sheet in the space provided for them.

1. Using the formal definition of O, Ω��DQG� -notation, which of the choices below
is true?

A. n3

 ∈� ��n) B. n3
 ∈ Ω(2 n) C. n3

 ∈ O(2n) D. A and B E. A and C

2. Which of the functions below grows the fastest for large values of n?

A. n22n(log n) B. n23n(log n) C. n22n(log n)5 D. n23n(log n)2 E. n42n

3. Suppose that we are performing double hashing. Our table size is m = 74 = 2401.

Recall that the first hash function gives the initial location to be probed and the
second hash function gives the size of the steps we should jump as we follow the
probe sequence. Which of the following values for the second hash function will
guarantee that, when doing an insertion, we will find an empty table location
unless the entire table is full?

A. 12 B. 35 C. 49 D. 63 E. 98

4. The bucketsort algorithm was able to sort n integers in the range 0 to n-1 in worst
�Q��WLPH��:K\�LV�WKLV�QRW�D�FRQtradiction of the Ω(n log n) lower bound we gave

on sorting?

A. That lower bound was for the algorithms that exchange adjacent
elements

B. That lower bound was for algorithms that work by comparing keys
C. That lower bound was for NP-sorting
D. That lower bound was for inputs with range 0 to n2

5. Which of these orders is not a possible order in which Depth First Search could

visit the vertices of the directed graph shown below?

 A. ADEBC B. ADECB C.ABEDC D. ABECD E. ABCED

6. Which of these orders is not a valid topological order for the same graph?

A. ABCDE B. ABDCE C. ADCBE D. ADBCE

7. Suppose that for some NP-complete problem L, someone was able to show that L
was in the class P. What conclusions could you draw?

A. P = NP
B. There is an algorithm to determine in polynomial time whether or not a

given graph can be 3-colored.
C. There is no polynomial-time algorithm to decide whether a given

boolean expression, built from boolean variables and the operators and,
or, and not, is satisfiable.

D. A and B
E. B and C

8. What is the smallest possible height of a decision tree with 200 leaves? Note that

the height of a leaf node is 0!

A. 9 B. 8 C. 7 D. 6 E. 5

9. Suppose that we are storing a heap in an array A. This is the type of heap used
for quickly finding the maximum element, so values increase as we go from a
leaf to the root. Assuming A is as shown below, and we delete the largest
element, in what position will the value 20 be after we reheapify? (Use the
algorithm discussed in class for deleting from a heap, this is the same as the
deletion that occurs during the second phase of heapsort.)

B

D

C A E

i: 1 2 3 4 5 6 7 8 9 10 11
A[i]: 90 80 70 50 60 30 40 5 10 15 20

A[5] B. A[6] C. A[7] D. A[9] E. A[10]

10. Which of the choices below correctly describes the amount of time used by the
following code:

for (i = 1; i � n; i++)
 for (j = 1; j �n; j = 2 *j)
 for (k = 1; k < n; k = 2 * k)
 x = x + 1;

A. (n)
B. (n log n)
C. (n(log n)2)
D. (n2)
E. (n2 log n)

Problem 2 (15 %)

The people of Ognad on planet Zur utilize a very simple alphabet. Monitoring their
transmissions we discover the frequency table given in the Appendix.

Problem 2A

Create a Huffman tree to determine efficient binary codes for each character. Find
Huffman codes for the letters and fill them into the table from the appendix.

Problem 2B

Encode the following Ognad words KELB DUME.
Decode the following sequence: 100011101010100001110101.

Problem 2C

On average how many bits would be transmitted if 1,000,000 characters were
transmitted? What is the minimum number of bits used per character if the above
character set were encoded using fixed-length encoding?

Problem 3 (30 %)

The object of the Oracle of Connery game is to start with any actor or actress who has
played one of the leading roles in any movie and connect them to Sean Connery in the
smallest number of links possible.

Two people are linked if they’ve been in a movie together. An actor/actress has Connery
number equal to one if he/she has had a leading role in a movie with Sean Connery. For
example, Catherine Zeta Jones has a Connery number equal to 1, as she played with him
in the movie Entrapment. You might wonder now what Brad Pitt’s Connery number is.
Under the assumption that they have never played in a movie together (we could not
think of one), one may proceed as follows: Brad Pitt was in the Legends of the Fall with
Anthony Hopkins, and Anthony Hopkins was in the film A Bridge Too Far with Sean
Connery. Thus Brad Pitt’s Connery number is 2.

Problem 3A

Given a database of movies with their actors (male or female), describe in English how
you could compute the Connery number of all actors.

Carefully state which major data structures and algorithms you would use and how you
would use them in order to solve this problem as efficiently as possible. IMPORTANT
NOTE: You will need to have chosen the main data structure correctly for the solution in
part 3C. Think well and think which design paradigm you will choose!

Assume that each record in the database is a movie name, followed by the number of
actors in that movie and then the names of the actors. One record may look like:
Legends of the Fall, 3, Anthony Hopkins, Brad Pitt, Aidan Quinn. You may assume
that no two actors and no two movies have the same names.

Problem 3B

Let M be the number of movies in the database, A be the number of actors, and S be the
average number of actors in each movie. Write an asymptotic expression for the running
time of your algorithm, and explain why it is so.

Problem 3C

IMPORTANT NOTE: You will use the main data structure you have chosen in part 3A.

Write the pseudocode for FindLink (D, A) where D is the reference to the data structure
to be processed (i.e., the data structure you decided to use to represent the records in
your database), A is the actor whose Connery number you are looking for.

&RQYHUW�WKH�GDWDEDVH�LQWR�DQ�DGMDFHQF\�OLVW�UHSUHVHQWDWLRQ�RI�DQ�XQRUGHUHG�JUDSK��ZLWK�D�

YHUWH[�IRU�HDFK�DFWRU�DQG�IRU�HDFK�PRYLH��5HDG�HDFK�UHFRUG�DQG�XVH�D�KDVK�WDEOH�WR�PDS�HDFK�

QDPH�WR�D�YHUWH[���7KH�YHUWH[�VKRXOG�DOVR�NHHS�D�FRS\�RI�WKH�QDPH���,QVHUW�HGJHV�EHWZHHQ�D�

PRYLH�YHUWH[�DQG�WKH�YHUWLFHV�IRU�DFWRUV�LQ�WKH�PRYLH��$SSO\�'LMNVWUD¶V�VKRUWHVW�SDWK�

DOJRULWKP�VWDUWLQJ�DW�WKH�YHUWH[�IRU�6HDQ�&RQQHU\���$OWHUQDWLYHO\��VLQFH�WKLV�LV�DQ�XQZHLJKWHG�

JUDSK��VLPSO\�XVH�%UHDGWK�)LUVW�6HDUFK���7KH�6HDQ�&RQQHU\�QXPEHU�LV�WKH�VKRUWHVW�SDWK�

OHQJWK�����IRU�HDFK�DFWRU�YHUWH[��

�

7KH�QXPEHU�RI�YHUWLFHV�LV�0�$��7KH�QXPEHU�RI�HGJHV�LV�06��'LMNVWUD�UXQV�LQ�2�_(_�ORJ�_9_���

VR�WKH�DQVZHU�LV�2��0�6�ORJ��0�$����,I�\RX�XVHG�%UHDGWK�)LUVW�6HDUFK�LQVWHDG�RI�'LMNVWUD��WKHQ�

WKH�UXQ�WLPH�LV�2�_(_���_9_���VR�WKH�DQVZHU�LV�2�0���$���06���

�

)RU�DQVZHU�RQ�SDUW�&��RQH�FRXOG�ZULWH�D�SVHXGRFRGH�IRU�'LMNVWUD��VWDUWLQJ�DW�&RQQHU\�DQG�

ORRNLQJ�DW�WKH�VKRUWHVW�SDWK�IURP�&RQQHU\�WR�$��UHWXUQLQJ�&RQQHU\�QXPEHU�DV�LQWHJHU�Q��25�

RQH�FRXOG�GR�WKH�EUHDWK�ILUVW�VHDUFK��ZLWK�&RQQHU\�DV�D�URRW���

Problem 4 (15 %)

Suppose you have been given an implementation of Quicksort which always picks the
first element of the sub-array as the pivot. You know that this can lead to very bad
performance on sorted or nearly-sorted input.

You are not allowed to modify the Quicksort code or write a new sorting algorithm from
scratch. However, you are allowed to process the input before you call Quicksort.

Problem 4A

Describe in English how you can put these pieces together to sort any input in average
O(n log n) run time.

5DQGRPO\�UHRUGHU�WKH�LQSXW�EHIRUH�FDOOLQJ�4XLFNVRUW��

�

Problem 4B

Write the pseudocode for your routine, Bettersort, which takes as input an array A and
the length of the array N. Your routine may allocate additional data structure(s) of size
N. It should make one call to the Quicksort routine. You have the use of the rand()
function which returns a random number.

external void Quicksort(int A[], int N); void
Bettersort(int A[], int N){…

LQW��%���
LQW�L��M��N��
%� �QHZ�LQW>1@��
N� ����
IRU��L 1��L!���L���^�
M� �UDQG�����L��
%>N��@� �$>M@��
$>M@� �$>L��@��
`�
IRU��L ���L�1��L����$>L@� �%>L@��
GHOHWH�%��
4XLFNVRUW��$��1����
`�

7KHUH�DUH�PDQ\�ZD\V�WR�VKXIIOH�WKH�LQSXW��7KLV�ZD\�LV�EDVHG�RQ�WUHDWLQJ�$�OLNH�D�
³JUDE�EDJ´���$�FOHYHUHU�VROXWLRQ�ZRXOG�DYRLG�DOORFDWLQJ�WKH�DUUD\�%��,QVWHDG��SXW�WKH�
VKXIIOHG�GDWD�DW�WKH�HQG�RI�WKH�DUUD\�$��7KDW�LV��ZKHQ�\RX�SXOO�RXW�WKH�UDQGRP�
HOHPHQW�DQG�VZDS�LQ�WKH�ODVW�HOHPHQW��SXW�WKDW�HOHPHQW�ZKHUH�WKH�ODVW�HOHPHQW�
XVHG�WR�EH��

Problem 5 (20 %)

IMPORTANT NOTE: You will be using a Java-like pseudo programming language in
this problem, implying that perfect Java-syntax is not expected, but that the language
should be recognizably Java, that your logic should be sound and understandable, and
that programming details like references etc. should be in a Java-like and understandable
syntax.

We will be looking at the B-tree ADT in this problem.

Problem 5A

Write in Java the data-structure for a B-tree of arbitrary order m = 3. (or a 2-3 tree). You
may assume that the values stored in the structure are integer values as usual. Note only
the data-structure is required and not the operations.

SOLUTION proposal for 5A

It can be solved in many ways, depending upon the choice of
underlying basic structure – i.e., whether single
attributes, pointer-chains (lists), arrays etc are used. It
also depends upon whether one uniform structure for all
types of nodes are used or whether internal and leaf nodes
are represented separately.

One possible implementation (among many) of a 2-3 tree
using single attributes and single node structure for both
node types is given below. Note that it is Java-like
pseudo-code and does show details like “public” etc.

class Node

{ boolean leaf; // Tells whether leaf-node or not.

 int leftVal; // Leftmost value. Used as left key

 // in internal node, and as leftmost

 // value in leaf node.

 int midVal; // Middle value. Used only in a leaf

 // node.

 int rightVal; // Rightmost value. Used as right key

 // in internal node, and as rightmost

 // value in leaf node.

 Node leftNode; // Referance to leftmost node if this

 // is an internal node.

 Node midNode; // Leftmost value. Used as left key

 // is an internal node.

 Node rightNode; // Leftmost value. Used as left key

 // is an internal node.

 Node mother; // It makes it easier to traverse if it

 // points back to mother (but is not

 // required).

}

Alternatively one could use two arrays of three elements,
one integer array for the three values leftVal, midVal,
rightVal, another for the three references instead of
leftNode, midNode, rightNode. This makes managing
operations like insert and delete (and hence merge) easier.

Yet another alternative is just using an array that
reserves 5 cells for each node (regardless of type), where
the block of 6 cells would look like this

The 5-cell block would function as an internal node
indexing (pointing to) left, mid and right children and
housing two key values (left and right keys).

The 5-cell block would function as a leaf node with up to
three values (left, mid and right values), not using the
keys as keys but marking (after some convention) of the
fact that this is a leaf node and not an internal node.

right
Val

right
Key

mid
Val

left
Key

left
Val

One may start using from cell 1, and use index value 0 in
internal node left, mid and right values as a mark of “null
reference” (or “no index”), and -1 (or some unlikely value)
as meaning “this is a leaf node) etc.

The student should preferably have noted that array-
implementation is efficient but may be a problem if not
possible to extend the size dynamically.

A mix of pointers (references) and arrays is also possible.
We will use a structure where all the leaves are in one
single array.

// The array that contains all leave-nodes. It is known to

// the Node class below, and to the “program”.

int Leaf[MAXLEAVES];

// The Node class that represents only internal nodes.

class Node

{ boolean pointsToLeaf; // Tells whether the node points to

 // a leaf node or not. If not,

 // it points to another internal

 // node.

 int indexToLeaf[3]; // Index into the array Leaf

 // where all the leaf nodes are, if

 // this does point to a leaf node.

 int key[2]; // If not leaf, its left-key is in

 // key[0],and right-key is in key[1].

 // Value = -1 is “no key”.

 Node child[3]; // Its leftmost child is in child[0] etc.

 // Built-in value “null” is “no child”.

 // Note it is usually recommended that each level is a

 // doubly linked-list giving access to siblings.

}

Problem 5B

We will assume a B-tree structure of order m = 3 which is also referred to as a 2-3 tree.
Assume also that the integer values recorded in the B-tree are ages of people. Write Java
code to search for the ages within a range lo � age � hi (where hi and lo are given) and
output each age in a sorted manner. You can choose the sorting order, but you must state
explicitly your choice of sorting order. Example: The program would output 11 and 13

(in ascending order) if the search is for 7 � age � 17 and if the structure contains only
those two ages recorded in that range.

SOLUTION proposal for 5B

The signature is not given, and can be assumed to be

void queryAge(Node root, int lo, int hi);

or

boolean queryAge(Node root, int lo, int hi);

or

int queryAge(Node root, int lo, int hi);

The second one may be expected to return success or failure
type of information. This can also be extended with a Unix-
like convention to return an integer value indicating
success (= 0) or different types of failure as in the third
one. The last one may also return number of nodes found.

Assume ascending sorting order and given 2-3 tree with
smaller values on the left like this one from the book:

 22 : -

16 : - 41 : 58

58, 59, 61 41, 52 22, 23, 31 8, 11, 12 16, 17, 18

We are assuming a query like “find all people with ages
from 10 to 20”, and with the 2-3 tree example above, it
should list out 5 values, i.e., 11, 12, 16, 17 and 18. We
are going to implement the signature that returns the
number of nodes found. With chose structure, the pseudo-
code is very simple:

int queryAge(Node root, int lo, int hi)

{

 int nodeCount = 0;

 // Find the node that refers to the leaf with the lo

 // value (assuming correct input, and that the value

 // exists in the structure).

 // It would be the one with 8, 11 and 12 in the example.

 int theLoIndex = findLeafIndex (root, lo); // See below.

 // Start rounds to print write out until hi is written.

 // Note that i < MAXLEAVES is just “security measure”.

 // The loop terminates with a break.

 for (int i = theLoIndex; i < MAXLEAVES; i++)

 {

 if (Leaf[i] >= lo && Leaf[i] <= hi)

 {

 System.out.ptintln(Leaf[i]);

 nodeCount++;

 }

 else break;

 }

 return nodeCount;

}

The other method used, i.e.,

 Node findLeafIndex(Node n, int val)

is for locating the index to the leaf that contains the
value “val”. It is trivial (book/lecture material), but the
logic is as follows: Start form the node n, checking keys
against “val”, and pick one of three pointers if
pointsToLeaf is false and repeat, else return with the
index.

Appendix – answer sheet for questions 1 and 2

Problem 1

Please insert the letter that corresponds to the correct answer to questions 1-10 into the
table bellow:

The correct answer to problem 7 is D. But in the context of the pensum (only
Hamiltonian circuit and traveling salesman problems were worked with), A is
accepted as correct as well.

Problem 2

You may use a clad sheet, but please draw the final tree in the space bellow (left of the
table). In order that as many of you as possible obtain the same answer, always arrange
the leaves and the sub-trees of the Huffman tree in increasing order from left to right. If
two leaves have the same weight, place as leftmost the one that appears in the table first
(from top to bottom). Fill the codes in.

(SEE THE TREE ON THE NEXT PAGE)

KELB DUME code is: 010111100101100011100000111

Decoding of 100011101010100001110101 is: ZEK_MEK.

Average number of bits transmitted per 1000000 characters is: 3400000.

Minimum number of bits for fixed – length encoding is: 4

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
C D A B C C A C A C

Frequency Table
Character Frequency Huffman code

space _ .13 101

U .15 110

K .10 010

B .10 011

E .18 111

M .05 0000

D .05 0001

R .10 001

Z .09 1000

L .06 1001

There is more then one correct answer – so if you followed the right procedure, but your
tree does not look quite the same, it is OK.

1.01

D M R

0.33

L
K B Z

0.20 0.10

0.20

0.40

E U _

0.28

0.61

0.15

