Optical Properties II: Emission of Light, Displays and Transparent Conductors Chemistry 754 Solid State Chemistry Lecture #22 May 21, 2003 Presentation by: Patrick Woodward Department of Chemistry The Ohio State University

l on	Excited State	Ground State	ς_{max} Emission
Mn^{2+} (3d ⁵)	$t_2^4 e^1 ({}^4T_1)$	t ₂ ³ e ² (⁶ A ₁)	Green-Orange-Red*
Sb ³⁺ (5s ²)	5s ¹ 5p ¹	5s ²	Blue*
Ce ³⁺ (4f ¹)	4f ⁰ 5d ¹	4f ¹ 5d ⁰	Near UV to Red*
Eu ²⁺ (4f ⁷)	4f ⁶ 5d ¹	$4f^75d^0$	Near UV to Red*
Tm ³⁺ (4f ¹²)	${}^{1}G_{4}$	${}^{3}H_{6}$	450 nm (Blue)
Er ³⁺ (4f ¹¹)	⁴ S _{3/2}	⁴ _{15/2}	545 nm (Green)
Tb ³⁺ (4f ⁸)	⁵ D ₄	⁷ F ₅	545 nm (Green)
Pr ³⁺ (4f ²)	³ P ₀	³ H ₅ (³ F ₂)	605 (635) nm (Red)
Eu ³⁺ (4f ⁶)	⁵ D ₀	⁷ F ₂	611 nm (Red)

Tricolor Fluorescent Lights

Tricolor fluorescent lights are more commonly used today because they give off warmer light, due to more efficient luminescence in the red region of the spectrum. Such lights contain a blend of at least three phosphors.

Red Phosphor

- ? Host Lattice = $(Y_{2-x}Eu_x)O_3 x = 0.06-0.10$ (Bixbyite structure)
- ? Sensitizer = $O^{2-2p} \Downarrow Eu^{3+}$ 5d charge transfer ($\varsigma_{max} \sim 230$ nm)
- ? Activator = ${}^{5}D_{0} \Downarrow {}^{7}F_{2}$ transition on Eu³⁺ [f⁶ ion] ($\varsigma_{max} \sim 611$ nm)

?Green Phosphor

- ? Host Lattice = $(La_{0.6}Ce_{0.27}Tb_{0.13})PO_4$ (Monazite structure)
- ? Sensitizer = $4f^1 \downarrow 5d^1$ excitation on Ce³⁺ [f¹ ion] ($\varsigma_{max} \sim 250$ nm)
- ? Activator = ${}^{5}D_{4} \downarrow {}^{7}F_{5}$ transition on Tb³⁺ [f⁸ ion] ($\varsigma_{max} \sim 543$ nm)

?Blue Phosphor

- ? Host Lattice = (Sr,Ba,Ca)₅(PO₄)₃Cl (Halophosphate structure)
- ? Sensitizer = $4f^{7}5d^{0} \downarrow 4f^{6}5d^{1}$ transition on Eu²⁺
- ? Activator = $4f^{6}5d^{1} \downarrow 4f^{7}5d^{0}$ transition on Eu²⁺ ($\varsigma_{max} \sim 450$ nm)

For a detailed yet very readable description of fluorescent light phosphors see: http://www.electrochem.org/dl/interface/sum/sum98/IF6-98-Page28-31.pdf

Electroluminescence Flat Panel Displays

Taken from the Planar systems website. http://www.planar.com/technology/el.asp In electroluminescence an electron is directly injected into the phosphor (in the excited state) and it relaxes giving off a photon.

This diagram shows how by running current through a single row (absorbant back electrode) and a single column (transparent front electrode) it is possible to light up a single pixel.

